請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98399完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳裕庭 | zh_TW |
| dc.contributor.advisor | Yu-Ting Chen | en |
| dc.contributor.author | 李泊漢 | zh_TW |
| dc.contributor.author | Po-Han Lee | en |
| dc.date.accessioned | 2025-08-05T16:13:10Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | Asokan, A. and Anitha, J. (2019). Change detection techniques for remote sensing appli- cations: A survey. Earth Science Informatics, 12:143–160.
Barry, D. and Hartigan, J. A. (1993). A bayesian analysis for change point problems. Journal of the American Statistical Association, 88(421):309–319. Campello, R. J., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining, pages 160–172. Springer. Chen, H. and Zhang, N. (2015). Graph-based change-point detection. The Annals of Statistics, 43(1):139–176. Dawn, T., Roy, A., Manna, A., and Ghosh, A. K. (2025). Some clustering-based change- point detection methods applicable to high dimension, low sample size data. Journal of Statistical Planning and Inference, 234:106212. Ester, M., K. H. P. S. J. . X. X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231. Harchaoui, Z., Moulines, E., and Bach, F. (2008). Kernel change-point analysis. Advances in neural information processing systems, 21:609–616. Harris, T., Li, B., and Tucker, J. D. (2022). Scalable multiple changepoint detection for functional data sequences. Environmetrics, 33(2):e2710. Kammammettu, S. and Li, Z. (2019). Change point and fault detection using kantorovich distance. Journal of Process Control, 80:41–59. Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2001). An online algorithm for segmenting time series. In Proceedings 2001 IEEE international conference on data mining, pages 289–296. Kvalseth, T. O. (2007). Entropy and correlation: Some comments. IEEE Transactions on Systems, Man, and Cybernetics, 17(3):517–519. Lopez, C. V. and Stilla, U. (2018). Object-based sar change detection for security and surveillance applications using density based clustering. In EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, pages 1–6. Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2014). Swarm: robust and fast clustering method for amplicon-based studies. PeerJ, 2:e593. Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115. Qin, R., Tian, J., and Reinartz, P. (2016). 3d change detection–approaches and applica- tions. ISPRS Journal of Photogrammetry and Remote Sensing, 122:41–56. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850. Song, X., Shi, M., Wu, J., and Sun, W. (2019). A new fuzzy c-means clustering-based time series segmentation approach and its application on tunnel boring machine analysis. Mechanical Systems and Signal Processing, 133:106279. Takahashi, S., Takeshita, K., Yamagishi, K., and Shiozu, A. (2024). Change point detec- tion based on cluster transition distributions. IEEE Access, pages 125145–125159. Woodall, W. H. and Ncube, M. M. (1985). Multivariate cusum quality-control procedures. Technometrics, 27(3):285–292. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98399 | - |
| dc.description.abstract | 本研究提出一種針對時序資料中多重變異點偵測的全新方法,結合密度式分群演算法與群集轉移行為之結構變化。藉由比較相鄰時間點的分群標籤變動,初步辨識變異點候選集合,再透過分群一致性指標(如RI與NMI)配合代表點篩選與肘點法,有效估計變異點數與位置。相較傳統方法,本方法具備無需預設分群數量、可自動排除雜訊觀測、並適用於非線性資料與受雜訊污染的資料等優勢。模擬實驗涵蓋多種場景,包括平均數平移、片段長度不等、狀態重複與高維稀疏變化等條件。本方法在多數場景中均展現高準確率與F-score,尤其在需定位精準且具解釋性之應用中具明顯優勢。與傳統CUSUM方法相較,能更有效避免過度偵測與誤判。整體而言,本方法為變異點偵測領域提供一具實用性與延展性之新方向。 | zh_TW |
| dc.description.abstract | We propose a novel unsupervised approach for multiple change point detection in time series based on cluster transition behavior. The method applies density-based clustering (DBSCAN) to reveal latent structure, identifies candidate change points via shifts in cluster assignments across time, and determines final change points using clustering consistency metrics such as RI and NMI, combined with representative selection and the elbow method. Unlike traditional approaches, our method does not require prior knowledge of the number of clusters, is robust to noise, and adapts well to non-linear data and data with noise. Extensive simulation studies demonstrate the method's strong performance across various scenarios, including mean shifts, unequal segment lengths, repeated states, and sparse high-dimensional changes. Our approach consistently achieves high accuracy and F-scores, particularly excelling in applications requiring precise localization and interpretability. Compared to classical methods like CUSUM, it effectively mitigates over-detection and false positives. Overall, this method offers a practical and extensible framework for robust change point detection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:13:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:13:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Introduction 1 Chapter 2 Single Change Detection 5 2.1 Preliminary 6 2.2 Clustering Method 7 2.3 Method for Single Change Point Detection 10 Chapter 3 Multiple Change Detection 12 3.1 Pre-screening via Permutation Test 13 3.2 First Step: Candidate Set Building 15 3.3 Second Step: Filtering 15 3.3.1 Grouping Nearby Change Points 16 3.3.2 Representative Selection Methods 17 3.4 Third Step: Determination of Final Estimation 20 Chapter 4 Simulation Study 24 4.1 Comparison of Null Case 26 4.2 Single Change Point Detection 27 4.3 MultipleChangePointDetection 30 Chapter 5 Conclusion 53 References 55 Appendix A — Other Results for Simulation 57 A.1 Table of k-means for Each Scenario 57 A.2 Other Histogram of Each Scenario 63 | - |
| dc.language.iso | en | - |
| dc.subject | DBSCAN | zh_TW |
| dc.subject | 分群一致性 | zh_TW |
| dc.subject | 非監督學習 | zh_TW |
| dc.subject | 多重變異點偵測 | zh_TW |
| dc.subject | 群集轉移行為 | zh_TW |
| dc.subject | multiple change point detection | en |
| dc.subject | cluster transition | en |
| dc.subject | DBSCAN | en |
| dc.subject | unsupervised learning | en |
| dc.subject | clustering consistency | en |
| dc.title | 基於群集轉移行為的多重變異點分析 | zh_TW |
| dc.title | Multiple Change Point Analysis Based on Cluster Transition Behavior | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林書勤;蔡嘉仁 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chin Lin;Jia-Ren Tsai | en |
| dc.subject.keyword | 多重變異點偵測,DBSCAN,群集轉移行為,分群一致性,非監督學習, | zh_TW |
| dc.subject.keyword | multiple change point detection,DBSCAN,cluster transition,clustering consistency,unsupervised learning, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202502243 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 統計與數據科學研究所 | - |
| dc.date.embargo-lift | 2025-12-01 | - |
| 顯示於系所單位: | 統計與數據科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 18.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
