請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98395完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 陳竑廷 | zh_TW |
| dc.contributor.author | Hung-Ting Chen | en |
| dc.date.accessioned | 2025-08-05T16:12:11Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | [1] IEA. "IEA (2024), Global EV Outlook 2024, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0." (accessed.
[2] Z. Ullah, K. T. Kim, J. k. Park, and J. Hur, "Comparative analysis of scalar and vector control drives of IPMSM under inter-turn fault condition considering nonlinearities," in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 20-24 Sept. 2015 2015, pp. 366-372, doi: 10.1109/ECCE.2015.7309711. [3] F. Korkmaz, T. İ, M. F. Çakir, and R. Gürbüz, "Comparative performance evaluation of FOC and DTC controlled PMSM drives," in 4th International Conference on Power Engineering, Energy and Electrical Drives, 13-17 May 2013 2013, pp. 705-708, doi: 10.1109/PowerEng.2013.6635696. [4] T. Ahmed, A. Das, and K. K. Halder, "Comparison of DTC and FOC for FSTP inverter fed IPMSM drives," in 2013 International Conference on Electrical Information and Communication Technology (EICT), 13-15 Feb. 2014 2014, pp. 1-5, doi: 10.1109/EICT.2014.6777825. [5] M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari, and M. Boussak, "Performance analysis of FOC and DTC for PMSM drives using SVPWM technique," in 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 21-23 Dec. 2015 2015, pp. 228-233, doi: 10.1109/STA.2015.7505167. [6] S. K. Sahoo, A. R. S. Batta, and S. Duggal, "Performance_analysis_and_simulation_of_three_phase_voltage_source_inverter_using_basic_PWM_techniques," IET Chennai 3rd International on Sustainable Energy and Intelligent Systems (SEISCON 2012), 2012. [7] M. Monadi, A. A. Astaraki, and P. C. nia, "Analysis and Comparison of SVPWM and SPWM Methods Used for Indirect Rotor Flux-Oriented Control of EV Applications," Journal of Power Technologies, 2024. [8] J. S. Artal-Sevil, R. Dufo-López, and J. L. Bernal-Agustín, "Analysis of different PWM Modulation Techniques: Comparison and Design," presented at the 2018 XIII Technologies Applied to Electronics Teaching Conference (TAEE), La Laguna, Spain, 2018. [9] Z. Shu, J. Tang, Y. Guo, and J. Lian, "An Efficient SVPWM Algorithm With Low Computational Overhead for Three-Phase Inverters," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1797-1805, 2007, doi: 10.1109/TPEL.2007.904228. [10] S. Albatran, A. S. Allabadi, A. R. A. Khalaileh, and Y. Fu, "Improving the Performance of a Two-Level Voltage Source Inverter in the Overmodulation Region Using Adaptive Optimal Third Harmonic Injection Pulsewidth Modulation Schemes," IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 1092-1103, 2021, doi: 10.1109/tpel.2020.3001494. [11] S. Harasis, I. Khan, and A. Massoud, "Investigating the Impact of PWM Schemes on Transient Response of Power Converters: Comparative Study Between SPWM, SVPWM, and THIPWM," presented at the 2024 IEEE 8th Energy Conference (ENERGYCON), 2024. [12] M. Wu and R. Zhao, "Method_analysis_and_comparison_of_SVPWM_and_SPWM," Proceedings of the 29th Chinese Control Conference, 2010. [13] 吳愛國, 朴成洙, and 楊仁剛, "SVPWM和SPWM的内在联系以及简化的SVPWM算法." [14] A. Ahmed, S. P. Biswas, M. S. Anower, M. R. Islam, S. Mondal, and S. M. Muyeen, "A Hybrid PWM Technique to Improve the Performance of Voltage Source Inverters," IEEE Access, vol. 11, pp. 4717-4729, 2023, doi: 10.1109/access.2023.3235791. [15] K. Nishizawa, J.-I. Itoh, A. Odaka, A. Toba, and H. Umida, "Current Harmonic Reduction Based on Space Vector PWM for DC-Link Capacitors in Three-Phase VSIs Operating Over a Wide Range of Power Factor," IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4853-4867, 2019, doi: 10.1109/tpel.2018.2859763. [16] S. Mithun, D. De, B. T. Rao, A. Vijaywargiya, and N. B. Puhan, "Analysis of Advanced Space Vector PWM Techniques Extended to Over-Modulation Region for Induction Machine Drive," in 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), 2-5 Jan. 2022 2022, pp. 1-6, doi: 10.1109/PESGRE52268.2022.9715960. [17] G. J. Sagar, C. N, and T. Mahto, "Hybrid PWM Control for Speed Control of Induction Motor with Improved Performance of Voltage Source Inverter," in 2025 IEEE 1st International Conference on Smart and Sustainable Developments in Electrical Engineering (SSDEE), 28 Feb.-2 March 2025 2025, pp. 1-6, doi: 10.1109/SSDEE64538.2025.10967611. [18] K. Chenchireddy and V. Jegathesan, "Multi-Carrier PWM Techniques Applied to Cascaded H-Bridge Inverter," in 2022 International Conference on Electronics and Renewable Systems (ICEARS), 16-18 March 2022 2022, pp. 244-249, doi: 10.1109/ICEARS53579.2022.9752442. [19] B. Adrien, M. Ghanes, F. Maurice, B. Abdelkader, and B. Jean-Pierre, "A New PWM Control based on an Optimized Zero Sequence Component injection: Application in a Two-Level Inverter," in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 13-16 Oct. 2021 2021, pp. 1-6, doi: 10.1109/IECON48115.2021.9589469. [20] H. J. Guo, "A Study on New PWM Signal Generation and Control Methods Application in Power Electronics Control," in TENCON 2024 - 2024 IEEE Region 10 Conference (TENCON), 1-4 Dec. 2024 2024, pp. 1306-1309, doi: 10.1109/TENCON61640.2024.10902986. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98395 | - |
| dc.description.abstract | 本論文旨在研究比較使用各種脈寬調變技術(Pulse Width Modulation, PWM)之磁場導向控制(Field Oriented Control, FOC)控制策略應用於內藏式永磁同步電動機(Interior Permanent Magnet Synchronous Motor, IPMSM)的控制效果,並在FOC控制中搭配每安培最大轉矩控制算法(Maximum Torque Per Ampere, MTPA)。
PWM中載波訊號的選擇上,高頻對稱三角波因為波形的對稱性所以會使定子電流總諧波失真(Total Harmonic Distortion, THD)較小,因此是比高頻鋸齒波更好的選擇;另外PWM的種類有很多種,空間向量脈寬調變(Space Vector Pulse Width Modulation, SVPWM)相較於弦波脈寬調變(Sinusoidal Pulse Width Modulation, SPWM)會因為電壓利用率較佳而有較好的控制效果,接著簡化空間向量脈寬調變(Simplified Space Vector Pulse Width Modulation, SSVPWM)提供一個和SVPWM控制效果相同,但運算更簡單的方法;最後優化空間向量脈寬調變(Optimum Space Vector Pulse Width Modulation, OSVPWM)的目的為降低逆變器輸入電流的諧波成分,進而讓前級使用轉換器電路之應用的並聯電容壽命更長,但缺點為定子電流總諧波失真(THD)較差,因此需根據需求斟酌使用。 本論文透過Matlab/Simulink進行模擬,比較各方法的轉速、轉矩響應等指標,最後比較出優劣勢與適用場合。 | zh_TW |
| dc.description.abstract | This thesis aims to investigate and compare the performance of various Pulse Width Modulation (PWM) techniques applied to Field Oriented Control (FOC) strategies for Interior Permanent Magnet Synchronous Motors (IPMSMs). Also the Maximum Torque Per Ampere (MTPA) algorithm is used in the FOC strategy to improve torque efficiency.
In terms of carrier waveform selection, high-frequency symmetrical triangular waveforms are preferred over sawtooth waveforms due to symmetry of waveform, which helps reduce Total Harmonic Distortion (THD) in stator current. Among the PWM techniques, Space Vector Pulse Width Modulation (SVPWM) offers better voltage utilization and possesses better performance compared to Sinusoidal Pulse Width Modulation (SPWM). Simplified Space Vector Pulse Width Modulation (SSVPWM) provides a computationally efficient method that achieves same performance to SVPWM. Optimum Space Vector Pulse Width Modulation (OSVPWM) is designed to minimize harmonic components in the inverter input current, thereby extending the lifespan of the front-end parallel capacitors in the power converter. However, OSVPWM typically results in higher stator current Total Harmonic Distortion (THD), which requires thorough trade-off considerations depending on system requirements. All methods are simulated and analyzed using Matlab/Simulink to evaluate performance indicators such as speed and torque response. The comparative results are used to assess the advantages and limitations of each PWM strategy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:12:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:12:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 ix 表次 xvii 1 第一章 緒論 1 1.1 研究背景與目標 1 1.2 文獻回顧 2 1.3 論文大綱 3 2 第二章 永磁同步電動機基本知識 4 2.1 永磁同步電動機 4 2.2 永磁同步電動機在靜止三相座標軸系的數學模型 5 2.3 座標軸轉換 7 2.3.1 靜止兩相座標軸系 8 2.3.2 同步旋轉座標軸系 10 2.4 永磁同步電動機在同步旋轉座標軸系的數學模型 12 2.4.1 永磁同步電動機數學模型推導 12 2.4.2 三相永磁同步電動機的功率與轉矩方程 16 2.5 磁場導向控制架構 17 2.5.1 每安培最大轉矩控制(Maximum Torque Per Ampere, MTPA) 22 3 第三章 脈寬調變技術 25 3.1 弦波脈寬調變 SPWM 27 3.1.1 使用高頻對稱三角波訊號當載波訊號 27 3.1.2 使用高頻鋸齒波訊號當載波訊號 29 3.2 空間向量脈寬調變SVPWM 30 3.3 簡化空間向量脈寬調變SSVPWM 37 3.4 優化空間向量脈寬調變OSVPWM 44 4 第四章 模擬結果 70 4.1 模擬情境與內藏式永磁同步電動機參數說明 70 4.2 使用不同載波訊號的SPWM控制效果比較 73 4.2.1 模擬情境一 73 4.2.2 模擬情境二 77 4.2.3 模擬情境三 80 4.2.4 模擬情境四 86 4.2.5 模擬情境五 89 4.2.6 其他指標模擬結果 94 4.2.7 小結 96 4.3 SPWM與SVPWM的比較 97 4.3.1 模擬情境一 98 4.3.2 模擬情境二 101 4.3.3 模擬情境三 105 4.3.4 模擬情境四 110 4.3.5 模擬情境五 113 4.3.6 其他指標模擬結果 118 4.3.7 小結 119 4.4 SVPWM與SSVPWM的比較 121 4.4.1 模擬情境一 121 4.4.2 模擬情境二 125 4.4.3 模擬情境三 128 4.4.4 模擬情境四 132 4.4.5 模擬情境五 135 4.4.6 其他指標模擬結果 139 4.4.7 小結 140 4.5 OSVPWM與SVPWM的比較 141 4.5.1 模擬情境一 141 4.5.2 模擬情境二 146 4.5.3 模擬情境三 152 4.5.4 模擬情境四 157 4.5.5 模擬情境五 163 4.5.6 其他指標模擬結果 168 4.5.7 小結 169 4.6 總結 170 5 第五章 結論與未來研究方向 173 5.1 結論 173 5.2 未來研究方向 174 6 參考文獻 175 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 脈寬調變技術 (PWM) | zh_TW |
| dc.subject | 每安培最大轉矩控制算法 (MTPA) | zh_TW |
| dc.subject | 空間向量脈寬調變 (SVPWM) | zh_TW |
| dc.subject | 內藏式永磁同步電動機 (IPMSM) | zh_TW |
| dc.subject | 磁場導向控制 (FOC) | zh_TW |
| dc.subject | Interior Permanent Magnet Synchronous Motor (IPMSM) | en |
| dc.subject | Field Oriented Control (FOC) | en |
| dc.subject | Pulse Width Modulation (PWM) | en |
| dc.subject | Space Vector Pulse Width Modulation (SVPWM) | en |
| dc.subject | Maximum Torque Per Ampere (MTPA) | en |
| dc.title | 各種脈寬調變技術應用於內藏式永磁同步馬達磁場導向控制比較 | zh_TW |
| dc.title | Comparison of Different PWM techniques Applied on Field Oriented Control to Interior Permanent Magnet Synchronous Motor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林子喬;蘇恆毅 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Chiao Lin;Heng-Yi Su | en |
| dc.subject.keyword | 內藏式永磁同步電動機 (IPMSM),脈寬調變技術 (PWM),磁場導向控制 (FOC),每安培最大轉矩控制算法 (MTPA),空間向量脈寬調變 (SVPWM), | zh_TW |
| dc.subject.keyword | Interior Permanent Magnet Synchronous Motor (IPMSM),Pulse Width Modulation (PWM),Field Oriented Control (FOC),Maximum Torque Per Ampere (MTPA),Space Vector Pulse Width Modulation (SVPWM), | en |
| dc.relation.page | 177 | - |
| dc.identifier.doi | 10.6342/NTU202502448 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
