Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡璧合zh_TW
dc.contributor.advisorPi-Ho Huen
dc.contributor.author李晨瑋zh_TW
dc.contributor.authorChen-Wei Leeen
dc.date.accessioned2025-08-05T16:11:11Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1] K. S. Kim et al., "The future of two-dimensional semiconductors beyond Moore’s law," Nature Nanotechnology, vol. 19, no. 7, pp. 895-906, 2024.
[2] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor technologies," IEEE Transactions on Device and materials reliability, vol. 5, no. 3, pp. 305-316, 2005.
[3] S. Veeraraghavan and J. G. Fossum, "Short-channel effects in SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 522-528, 2002.
[4] P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling of single-event upset in digital microelectronics," IEEE Transactions on nuclear Science, vol. 50, no. 3, pp. 583-602, 2003.
[5] H. J. Barnaby, "Total-ionizing-dose effects in modern CMOS technologies," IEEE transactions on nuclear science, vol. 53, no. 6, pp. 3103-3121, 2006.
[6] G. Yan et al., "Simulation of total ionizing dose (TID) effects mitigation technique for 22 nm fully-depleted silicon-on-insulator (FDSOI) transistor," IEEE Access, vol. 8, pp. 154898-154905, 2020.
[7] S. Bonaldo et al., "Influence of halo implantations on the total ionizing dose response of 28-nm pMOSFETs irradiated to ultrahigh doses," IEEE Transactions on nuclear science, vol. 66, no. 1, pp. 82-90, 2018.
[8] Y. Huang et al., "An effective method to compensate total ionizing dose-induced degradation on double-SOI structure," IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1532-1539, 2018.
[9] P. Paillet et al., "Total ionizing dose effects on deca-nanometer fully depleted SOI devices," IEEE transactions on nuclear science, vol. 52, no. 6, pp. 2345-2352, 2005.
[10] J. Prinzie, F. M. Simanjuntak, P. Leroux, and T. Prodromakis, "Low-power electronic technologies for harsh radiation environments," Nature Electronics, vol. 4, no. 4, pp. 243-253, 2021.
[11] J. R. Schwank et al., "Radiation effects in MOS oxides," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1833-1853, 2008.
[12] D. M. Fleetwood, "Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices," IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1706-1730, 2013.
[13] T. Ma et al., "TID degradation mechanisms in 16-nm bulk FinFETs irradiated to ultrahigh doses," IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 1571-1578, 2021.
[14] J. Schwank, V. Ferlet-Cavrois, M. Shaneyfelt, P. Paillet, and P. Dodd, "Radiation effects in SOI technologies," IEEE Transactions on nuclear Science, vol. 50, no. 3, pp. 522-538, 2003.
[15] M. Gaillardin, P. Paillet, V. Ferlet-Cavrois, O. Faynot, C. Jahan, and S. Cristoloveanu, "Total ionizing dose effects on triple-gate FETs," IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3158-3165, 2006.
[16] S. R. Banna, C. Chan, M. Chan, S. K. Fung, and P. K. Ko, "A unified understanding on fully-depleted SOI NMOSFET hot-carrier degradation," IEEE Transactions on Electron Devices, vol. 45, no. 1, pp. 206-212, 1998.
[17] T. Watanabe, N. Goto, N. Yasuhisa, T. Yanase, T. Tanaka, and S. Shinozaki, "Highly reliable trench capacitor with SiO2/Si3N4/SiO2 stacked film," in 25th International Reliability Physics Symposium, 1987: IEEE, pp. 50-54.
[18] B. Yun, "Measurements of charge propagation in Si3N4 films," Applied Physics Letters, vol. 25, no. 6, pp. 340-342, 1974.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98391-
dc.description.abstract近年來,隨著航太科技的進步、低軌衛星通訊的快速發展,以及核能、國防與高可靠性電子系統的廣泛推廣,電子元件在輻射環境中穩定運作的需求日益殷切。在各類輻射效應中,總電離劑量效應(Total Ionizing Dose, TID)是最常見且最可能造成永久性損傷的一種,會在絕緣層中累積陷阱電荷,進而導致臨界電壓漂移、漏電流上升,甚至造成元件失效。矽覆蓋絕緣層(Silicon-On-Insulator, SOI)技術因具備優異的短通道效應控制能力與低漏電流特性,已廣泛應用於輻射環境。然而,SOI結構中所包含的厚埋氧化層(Buried Oxide, BOX)也使其更容易受到TID的影響,進而引發電性劣化與可靠度問題。
本篇論文提出一種結合多層埋氧化層結構與電子陷阱模型的設計方法,應用於提升SOI元件在總電離劑量效應(TID)下的抗輻射能力。首先,本研究針對單層BOX結構進行分析,探討在不同BOX厚度下通道底部陷阱電荷累積與臨界電壓漂移(ΔVTH)的變化,作為後續結構比較基準。接著,延伸探討SiO2/Si3N4與Si3N4/ SiO2 兩種雙層結構在TID環境中的表現,特別聚焦於Si3N4層中的電子陷阱是否能產生電荷補償效果,以及對ΔVTH抑制的貢獻。最後,本研究進一步分析三層BOX結構SiO2/Si3N4/SiO2在抗TID性能上的改善程度,並總結多層BOX結構設計與電子陷阱機制對於提升SOI元件輻射耐受性的有效性。
研究結果顯示,在單層BOX結構中,ΔVTH並不會隨BOX厚度的減薄而單調下降,反而呈現先上升後下降的趨勢。這表示在某些厚度條件下,BOX底部的電洞會在尚未完全切斷通道底部電力線的情況下更加靠近通道,導致ΔVTH加劇。因此,單純依賴BOX厚度微縮並不足以有效抑制TID效應。在雙層BOX 結構比較中,SiO2/Si3N4結構的ΔVTH減少幅度達30.8%,明顯優於Si3N4/SiO2結構僅有的7.5%,顯示材料排列順序對電場分佈與電荷補償效果具有顯著影響,可有效提升SOI元件在輻射環境下的穩定性與可靠度。而在三層結構方面,於BOX厚度為10 nm的條件下,採用SiO2/Si3N4/SiO2並考慮電子陷阱後,其ΔVTH相較於傳統單層SiO2結構進一步降低45.2%,展現出最佳的抗總電離劑量效應能力。
zh_TW
dc.description.abstractIn recent years, with the development of space technology, the rise of low-earth orbit satellite communication, and the growth of nuclear, military, and high-reliability electronic systems, the need for stable electronic devices in radiation environments has become more important. Among various radiation effects, the Total Ionizing Dose (TID) effect is the most common and may cause permanent damage. TID causes trapped charges in the insulator, which leads to threshold voltage shift, leakage current increase, and even device failure. Silicon-On-Insulator (SOI) technology has good short-channel control and low leakage, so it is widely used in radiation environments. However, the Buried Oxide (BOX) layer in SOI makes it more sensitive to TID, and this causes electrical degradation and reliability issues.
To address this issue, this work proposes a TID-hardened SOI design using a multi-layer BOX structure integrated with an electron trap model. First, the ΔVTH behavior in single-layer BOX structures is examined under varying BOX thickness. The results show that ΔVTH does not monotonically decrease with thinner BOX. Instead, it increases first and then decreases, suggesting that in certain BOX thicknesses, holes near the BOX/substrate interface can couple more strongly to the channel, worsening ΔVTH . This indicates that BOX thinning alone is insufficient to suppress TID effects.
Next, two double-layer BOX structures, SiO2/Si3N4 and Si3N4/SiO2, are analyzed to investigate the impact of material arrangement and the role of electron traps in Si3N4. The SiO2/Si3N4 configuration shows a ΔVTH reduction of 30.8%, which is significantly better than the 7.5% reduction observed in the Si3N4/SiO2 case. This confirms that the order of the dielectric layers affects the electric field distribution and enhances charge compensation. Finally, a triple-layer BOX structure, SiO2/Si3N4/SiO2, is evaluated under a total BOX thickness of 10 nm. With electron traps considered, this configuration achieves a ΔVTH reduction of 45.2% compared to the single-layer SiO2 baseline, demonstrating the best TID resilience among all tested structures. These results confirm that combining multi-layer BOX engineering with trap-assisted charge control is an effective approach to improving TID hardness in SOI devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:11:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:11:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 III
ABSTRACT V
目次 VII
圖次 IX
表次 XIII
第一章 導論 1
1.1 背景與相關研究 1
1.1.1 輻射效應 (Radiation Effect) 5
1.1.2 總電離劑量效應( Total Ionizing Dose Effect ) 7
1.1.3 抗輻射電路的挑戰 9
1.2 研究動機 11
1.3 論文架構 13
第二章 單層FDSOI元件抗輻射程度及物理機制分析 14
2.1 前言 14
2.2 輻射模擬模型 15
2.3 模擬流程 18
2.4 元件結構及模擬參數 20
2.5 單層FDSOI元件輻射容忍度分析 21
2.5.1 BOX厚度與電場分佈分析 22
2.5.2 BOX厚度與電洞分佈分析 25
2.5.3 BOX厚度與抗輻射特性分析 28
2.6 結論 32
第三章 FDSOI使用SI3N4層增強抗總電離劑量效應特性 33
3.1 前言 33
3.2 元件結構及模擬參數設定 35
3.3 雙層FDSOI元件輻射容忍度分析 39
3.3.1 SiO2/Si3N4雙層BOX結構之電場與陷阱電荷分佈分析 40
3.3.2 Si3N4/SiO2雙層BOX結構之電場與陷阱電荷分佈分析 50
3.4 SIO2/SI3N4/ SIO2三層BOX結構之抗總電離劑量效應特性分析 60
3.4.1 電場分佈分析 61
3.4.2 電荷分佈分析 66
3.4.3 臨界電壓漂移量分析 69
3.5 結論 74
第四章 總結 75
第五章 未來展望 77
參考文獻 79
-
dc.language.isozh_TW-
dc.subject抗輻射zh_TW
dc.subject總電離劑量效應zh_TW
dc.subject矽覆蓋絕緣層zh_TW
dc.subject多層埋氧化層結構zh_TW
dc.subject氮化矽zh_TW
dc.subjectRadiation-Hardeneden
dc.subjectSi3N4en
dc.subjectSilicon-On-Insulatoren
dc.subjectMulti-layer BOXen
dc.subjectTotal Ionizing Dose Effecten
dc.title氮化矽層對提升SOI元件抗總電離劑量效應能力之研究zh_TW
dc.titleInvestigation of Si3N4 Layer Effects on the Enhancement of TID Hardness in SOI Devicesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡振國;蘇俊榮zh_TW
dc.contributor.oralexamcommitteeJenn-Gwo Hwu;Chun-Jung Suen
dc.subject.keyword抗輻射,總電離劑量效應,矽覆蓋絕緣層,多層埋氧化層結構,氮化矽,zh_TW
dc.subject.keywordRadiation-Hardened,Total Ionizing Dose Effect,Multi-layer BOX,Silicon-On-Insulator,Si3N4,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202502815-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved