請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌 | zh_TW |
| dc.contributor.advisor | Shih-Huang Tung | en |
| dc.contributor.author | 陳昱愷 | zh_TW |
| dc.contributor.author | Yu-Kai Chen | en |
| dc.date.accessioned | 2025-08-05T16:06:41Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | (1) Liu, H.; Cao, C.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances. Nanoscale 2020, 12 (2), 437-453.
(2) Lin, S.; Fu, X.; Luo, M.; Zhong, W.-H. A protein aerogel with distinctive filtration capabilities for formaldehyde and particulate pollutants. Separation and Purification Technology 2023, 310,123179. (3) Govind Kumar Sharma, N. R. J. Electrospinning: The Technique and Applications. Recent Developments in Nanofibers Research 2022, 105804. (4) Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews 2019, 119 (8), 5298-5415. (5) JF., C. Apparatus for electrically dispersing fluids. US Pat 1900, 693, 1-6. (6) Soderlund H, K. L., Von Bonsdorff CH. Properties of semliki forest virus nucleocapsid Medical Biology 1975, 53, 412-417. (7) Zhang, Z.; Ji, D.; He, H.; Ramakrishna, S. Electrospun ultrafine fibers for advanced face masks. Materials Science & Engineering R 2021, 143, 100594. (8) Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A.; Vaidhyanathan, B. Electrospinning of nanofibers and their applications for energy devices. Journal of Nanomaterials 2015, 2015 (1), 140176. (9) Williams GR, R.-A. B., Luo CJ. Coaxial and multi-axial electrospinning. In: nanofibres in drug delivery. UCL Press 2018, 106-148. (10) Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc Chem Res 2017, 50 (8), 1976-1987. (11) Reneker, D. H.; Fong, H. Polymeric Nanofibers: Introduction. Polymeric Nanofibers, 2006, 918, 1-6. (12) Taylor, G. Disintegration of water drops in an electric field. Proceedings of the Royal Society A 1997, 280 (1382), 383-397. (13) Collins, R. T.; Jones, J. J.; Harris, M. T.; Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Physics 2007, 4 (2), 149-154. (14) Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49 (10), 2387-2425. (15) He, J.-H.; Wu, Y.; Zuo, W.-W. Critical length of straight jet in electrospinning. Polymer 2005, 46 (26), 12637-12640. (16) Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P. Electrospinning and electrically forced jets. II. Applications. Physics of Fluids 2001, 13 (8), 2221-2236. (17) Ibrahim, Y. S.; Hussein, E. A.; Zagho, M. M.; Abdo, G. G.; Elzatahry, A. A. Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. Int J Mol Sci 2019, 20 (10), 2455. (18) Collins, G.; Federici, J.; Imura, Y.; Catalani, L. H. Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. Journal of Applied Physics 2012, 111 (4), 044701. (19) Han, T.; Reneker, D. H.; Yarin, A. L. Pendulum-like motion of straight electrified jets. Polymer 2008, 49 (8), 2160-2169. (20) Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry 2018, 11 (8), 1165-1188. (21) Haider, S.; Al-Zeghayer, Y.; Ahmed Ali, F. A.; Haider, A.; Mahmood, A.; Al-Masry, W. A.; Imran, M.; Aijaz, M. O. Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research 2013, 20 (4), 648823. (22) Lannutti, J.; Reneker, D.; Ma, T.; Tomasko, D.; Farson, D. Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C 2007, 27 (3), 504-509. (23) Sill, T. J.; von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008, 29 (13), 1989-2006. (24) Valizadeh, A.; Mussa Farkhani, S. Electrospinning and electrospun nanofibres. IET Nanobiotechnol 2014, 8 (2), 83-92. (25) Silke Megelski; Jean S. Stephens; D. Bruce Chase; John F. Rabolt*. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456-8466. (26) Zeleny, J. The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure. Journal of The Franklin Institute 1935, 219 (1314), 659-675. (27) Baumgarten, P. K. Electrostatic Spinning of Acrylic Microfibers. Journal of Colloid and Interface Science 1971, 36 (1), 71-79. (28) J.M. Deitzel; J. Kleinmeyer; D. Harris; Tan*, N. C. B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. (29) Matabola, K. P.; Moutloali, R. M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. Journal of Materials Science 2013, 48 (16), 5475-5482. (30) Qiang Li ; Zhidong Jia ; Ying Yang; Liming Wang; Guan, Z. Preparation and Properties of Poly (vinyl alcohol) Nanofibers by Electrospinning. International Conference on Solid Dielectrics 2007, 215 - 218. (31) Kim, G.-T.; Lee, J.-S.; Shin, J.-H.; Ahn, Y.-C.; Shin, H.-S.; Lee, J.-K.; Sung, C.-M.; Hwang, Y.-J. Investigation of Pore Formation for Polystyrene Electrospun Fiber: Effect of Relative Humidity. Korean Journal of Chemical Engineering 2005, 22, 783-788. (32) Pelipenko, J.; Kristl, J.; Jankovic, B.; Baumgartner, S.; Kocbek, P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 2013, 456 (1), 125-134. (33) Wang, P.; Lv, H.; Cao, X.; Liu, Y.; Yu, D. G. Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023, 15 (4), 921. (34) Witte, P. v. d.; Dijkstra, p. j.; Berg, J. W. A. v. d.; Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science 1996, 117 (1-2), 1-31. (35) Şimşek, M. Tuning surface texture of electrospun polycaprolactone fibers: Effects of solvent systems and relative humidity. Journal of Materials Research 2020, 35 (3), 332-342. (36) Huang, C.; Thomas, N. L. Fabricating porous poly(lactic acid) fibres via electrospinning. European Polymer Journal 2018, 99, 464-476. (37) Pai, C.-L.; Boyce, M. C.; Rutledge, G. C. Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromolecules 2009, 42 (6), 2102-2114. (38) Lu, P.; Xia, Y. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 2013, 29 (23), 7070-7078. (39) Chen, Y.-R.; Chung, H.-W.; Tung, S.-H. On the Formation Mechanism of Nonsolvent-Induced Porous Polylactide Electrospun Fibers. ACS Applied Polymer Materials 2021, 3 (10), 5096-5104. (40) Qi, Z.; Yu, H.; Chen, Y.; Zhu, M. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Materials Letters 2009, 63 (3-4), 415-418. (41) Katsogiannis, K. A. G.; Vladisavljević, G. T.; Georgiadou, S. Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal 2015, 69, 284-295. (42) Laitya, P. R.; Gloverb, P. M.; Hayc, J. N. Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 2002, 43, 5827–5837. (43) Matsuyama, H.; Karkhanechi, H.; Rajabzadeh, S. Polymeric membrane fabrication via thermally induced phase separation (TIPS) method. Hollow Fiber Membranes 2021, 57-83. (44) McCann, J. T.; Marquez, M.; Xia, Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J. Am. Chem. Soc. 2006, 128 (5), 1436-1437. (45) Ye, X.-Y.; Lin, F.-W.; Huang, X.-J.; Liang, H.-Q.; Xu, Z.-K. Polymer fibers with hierarchically porous structure: combination of high temperature electrospinning and thermally induced phase separation. RSC Advances 2013, 3 (33), 13851. (46) Dilamian, M.; Joghataei, M.; Ashrafi, Z.; Bohr, C.; Mathur, S.; Maleki, H. From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Applied Materials Today 2021, 22, 100964. (47) Siddique, J. A.; Ansari, S. P.; Yadav, M. Carbon aerogel composites for gas sensing. Advances in Aerogel Composites for Environmental Remediation 2021, 49-73. (48) Wan, W.; Lin, Y.; Prakash, A.; Zhou, Y. Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. Journal of Materials Chemistry A 2016, 4 (48), 18687-18705. (49) Zhou, S.; Zhou, L.; Zhang, Y.; Sun, J.; Wen, J.; Yuan, Y. Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. Journal of Materials Chemistry A 2019, 7 (9), 4217-4229. (50) Garcia-Gonzalez, C. A.; Budtova, T.; Duraes, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019, 24 (9), 1815. (51) Alhwaige, A. A.; Ishida, H.; Qutubuddin, S. Carbon Aerogels with Excellent CO2 Adsorption Capacity Synthesized from Clay-Reinforced Biobased Chitosan-Polybenzoxazine Nanocomposites. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1286-1295. (52) Hasan, M. F.; Zhang, L. Recent Advances in Aerogel Materials from Electrospun Nanofibers: A Review. Fibers and Polymers 2023, 24 (5), 1553-1572. (53) Shukla, S. Freeze drying process: A review. IJPSR 2011, 2 (12), 3061-3068. (54) Simón-Herrero, C.; Caminero-Huertas, S.; Romero, A.; Valverde, J. L.; Sánchez-Silva, L. Effects of freeze-drying conditions on aerogel properties. Journal of Materials Science 2016, 51 (19), 8977-8985. (55) Zhang, X.; Yu, Y.; Jiang, Z.; Wang, H. The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel. Journal of Wood Science 2015, 61 (6), 595-601. (56) García-González, C. A.; Camino-Rey, M. C.; Alnaief, M.; Zetzl, C.; Smirnova, I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. The Journal of Supercritical Fluids 2012, 66, 297-306. (57) Williams, J. R.; Clifford, A. A.; al-Saidi, S. H. Supercritical fluids and their applications in biotechnology and related areas. Mol Biotechnol 2002, 22 (3), 263-286. (58) Xie, J.; Niu, L.; Qiao, Y.; Lei, Y.; Li, G.; Zhang, X.; Chen, P. The influence of the drying method on the microstructure and the compression behavior of graphene aerogel. Diamond and Related Materials 2022, 121, 108772. (59) Si, Y.; Yu, J.; Tang, X.; Ge, J.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 2014, 5, 6802. (60) Zhu, J.; Lv, S.; Yang, T.; Huang, T.; Yu, H.; Zhang, Q.; Zhu, M. Facile and Green Strategy for Designing Ultralight, Flexible, and Multifunctional PVA Nanofiber‐Based Aerogels. Advanced Sustainable Systems 2020, 4 (4), 1900141. (61) 廖益誠. 4-乙烯基吡啶-苯乙烯共聚物多孔纖維氣凝膠的製備及應用. 國立台灣大學, 台北市, 2023. (62) da Silva, F. T.; de Oliveira, J. P.; Fonseca, L. M.; Bruni, G. P.; da Rosa Zavareze, E.; Dias, A. R. G. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. Int J Biol Macromol 2020, 155, 6-13. (63) Pan, J.; Li, Y.; Chen, K.; Zhang, Y.; Zhang, H. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym 2021, 266, 118102. (64) Correa-Ochoa, M. A.; Rojas, J.; Gómez, L. M.; Aguiar, D.; Palacio-Tobón, C. A.; Colorado, H. A. Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy. Sustainability 2023, 15 (11), 8504. (65) Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; et al. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle. Atmospheric Environment 2015, 117, 200-211. (66) McDuffie, E. E.; Martin, R. V.; Spadaro, J. V.; Burnett, R.; Smith, S. J.; O'Rourke, P.; Hammer, M. S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM(2.5) and attributable mortality across multiple spatial scales. Nat Commun 2021, 12 (1), 3594. (67) Ghosh, A. K.; Soberanes, S.; Lux, E.; Shang, M.; Aillon, R. P.; Eren, M.; Budinger, G. R. S.; Miyata, T.; Vaughan, D. E. Pharmacological inhibition of PAI-1 alleviates cardiopulmonary pathologies induced by exposure to air pollutants PM(2.5). Environ Pollut 2021, 287,117283. (68) Li, Z.; Li, X.; Song, H.; Tao, B.; Qiu, B.; Tian, D.; Zhan, M.; Wu, Z.; Wu, J.; Zhang, Q.; et al. Effects of short-term ambient PM2.5 exposure on the blood cell count and hemoglobin concentration among 82,431 people in eastern China. Science of The Total Environment 2021, 776,146046. (69) Lin, Y. C.; Chi, W. J.; Lin, Y. Q. The improvement of spatial-temporal resolution of PM(2.5) estimation based on micro-air quality sensors by using data fusion technique. Environ Int 2020, 134, 105305. (70) Xiao, J.; Liang, J.; Zhang, C.; Tao, Y.; Ling, G. W.; Yang, Q. H. Advanced Materials for Capturing Particulate Matter: Progress and Perspectives. Small Methods 2018, 2 (7), 1800012. (71) Zhang, S.; Liu, H.; Tang, N.; Zhou, S.; Yu, J.; Ding, B. Spider-Web-Inspired PM(0.3) Filters Based on Self-Sustained Electrostatic Nanostructured Networks. Adv Mater 2020, 32 (29), 228. (72) Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. High‐Performance PM0.3 Air Filters Using Self‐Polarized Electret Nanofiber/Nets. Advanced Functional Materials 2020, 30 (13), 1909554. (73) Cui, J.; Wang, Y.; Lu, T.; Liu, K.; Huang, C. High performance, environmentally friendly and sustainable nanofiber membrane filter for removal of particulate matter 1.0. J Colloid Interface Sci 2021, 597, 48-55. (74) Yang, Z.; Zhang, X.; Qin, Z.; Li, H.; Wang, J.; Zeng, G.; Liu, C.; Long, J.; Zhao, Y.; Li, Y.; et al. Airflow Synergistic Needleless Electrospinning of Instant Noodle-like Curly Nanofibrous Membranes for High-Efficiency Air Filtration. Small 2022, 18 (14), 2107250. (75) Qiao, S.; Kang, S.; Zhu, J.; Wang, Y.; Yu, J.; Hu, Z. A synergistic self-assembly strategy to fabricate thermally stable OPAN/PI composite aerogels for particulate matter removal. Materials Chemistry Frontiers 2021, 5 (24), 8308-8318. (76) Li, Y.; Cao, L.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Semi‐Interpenetrating Polymer Network Biomimetic Structure Enables Superelastic and Thermostable Nanofibrous Aerogels for Cascade Filtration of PM2.5. Advanced Functional Materials 2020, 30 (14). (77) Shen, Y.; Li, D.; Deng, B.; Liu, Q.; Liu, H.; Wu, T. Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications. R Soc Open Sci 2019, 6 (8). (78) Sun, Y.; Zhang, X.; Zhang, M.; Ge, M.; Wang, J.; Tang, Y.; Zhang, Y.; Mi, J.; Cai, W.; Lai, Y.; et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges. Chemical Engineering Journal 2022, 446. (79) Zhao, K.; Ren, C.; Lu, Y.; Zhang, Q.; Wu, Q.; Wang, S.; Dai, C.; Zhang, W.; Huang, J. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2.5 and thermal stability. Carbohydr Polym 2022, 291. (80) Huang, J.; Lin, S.; Liang, Y.; Wang, E.; Miao, Y.; Zhang, W.; Sheng, K. Preparation of PVA/PEI/CNC/ZnO composite membrane with good mechanical properties and water resistance by electrostatic spinning using for efficient filtration of PM2.5. Journal of Polymer Science 2023, 61 (20), 2451-2461. (81) Dai, Q.; Liu, J.; Zheng, J.; Fu, B. Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration. Sustainability 2023, 15 (18). (82) Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromolecular Materials and Engineering 2018, 303 (12). (83) Wang, S.; Zhao, X.; Yin, X.; Yu, J.; Ding, B. Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration. ACS Appl Mater Interfaces 2016, 8 (36), 23985-23994. (84) Przekop, R. Estimation of Filtration Efficiency – from Simple Correlations to Digital Fluid Dynamics. Chemical and Process Engineering 2017, 38 (1), 31-50. (85) Wang, H.; Zhao, H.; Guo, Z.; Zheng, C. Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann two-phase flow model. Powder Technology 2012, 227, 111-122. (86) Barhate, R.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science 2007, 296 (1-2), 1-8. (87) Liu, H.; Zhu, Y.; Zhang, C.; Zhou, Y.; Yu, D.-G. Electrospun nanofiber as building blocks for high-performance air filter: A review. Nano Today 2024, 55,102161. (88) Gao, Y.; Tian, E.; Zhang, Y.; Mo, J. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties. Applied Materials Today 2022, 26, 101369. (89) Thakur, R.; Das, D.; Das, A. Electret Air Filters. Separation & Purification Reviews 2013, 42 (2), 87-129. (90) Leung, W. W.-F.; Hung, C.-H.; Yuen, P.-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separation and Purification Technology 2010, 71 (1), 30-37. (91) Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat Commun 2015, 6,6205. (92) Estakhrposhti, S. M. R.; Abdollahi, M. Reverse iodine transfer copolymerization of styrene and acrylonitrile: copolymer synthesis, characterization and kinetic study. Journal of Polymer Research 2021, 28 (8), 283. (93) Yokoyama, E.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid and Polymer Science 1986, 264, 595-601. (94) Chuang, R.-M.; Vo, T. H.; Tsao, H.-K.; Sheng, Y.-J. High-strength poly(vinyl alcohol) physical eutectogels: Effects of polymer molecular weight, DES composition, and heat treatment. Journal of Molecular Liquids 2025, 417, 126592. (95) Liu, H.; Huang, J.; Mao, J.; Chen, Z.; Chen, G.; Lai, Y. Transparent Antibacterial Nanofiber Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture. iScience 2019, 19, 214-223. (96) Zhang, Q.; Li, Q.; Young, T. M.; Harper, D. P.; Wang, S. A Novel Method for Fabricating an Electrospun Poly(Vinyl Alcohol)/Cellulose Nanocrystals Composite Nanofibrous Filter with Low Air Resistance for High-Efficiency Filtration of Particulate Matter. ACS Sustainable Chemistry & Engineering 2019, 7 (9), 8706-8714. (97) Yoo, D. K.; Woo, H. C.; Jhung, S. H. Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Interfaces 2020, 12 (30), 34423-34431. (98) Li, C. X.; Kuang, S. Y.; Chen, Y. H.; Wang, Z. L.; Li, C.; Zhu, G. In Situ Active Poling of Nanofiber Networks for Gigantically Enhanced Particulate Filtration. ACS Appl Mater Interfaces 2018, 10 (29), 24332-24338. (99) Xu, J.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R.; Liu, Y.; Cui, Y. Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter. Nano Lett 2016, 16 (2), 1270-1275. (100) Kim, H. J.; Park, S. J.; Kim, D. I.; Lee, S.; Kwon, O. S.; Kim, I. K. Moisture Effect on Particulate Matter Filtration Performance using Electro-Spun Nanofibers including Density Functional Theory Analysis. Sci Rep 2019, 9 (1), 7015. (101) Liu, F.; Li, M.; Shao, W.; Yue, W.; Hu, B.; Weng, K.; Chen, Y.; Liao, X.; He, J. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance. J Colloid Interface Sci 2019, 557, 318-327. (102) Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Yang, B.; Song, S. Design of double-component metal-organic framework air filters with PM(2.5) capture, gas adsorption and antibacterial capacities. Carbohydr Polym 2019, 203, 415-422. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98372 | - |
| dc.description.abstract | 空氣中的污染物,包括懸浮微粒 (PM) 、病原體和氣體,對於人體健康帶來了嚴重的挑戰。靜電紡絲技術已成為一種製備奈米纖維的簡便方法,用於分離空氣污染物。在本研究中,透過實驗室所歸納出的成孔機制和條件,製備出具有多孔結構的電紡纖維,並結合製備氣凝膠的技術,除了纖維表面上具有孔洞結構外,將體先的2D纖維薄膜變成3D立和網狀結構可大幅提升比表面積,成功製備出由苯乙烯-丙烯腈共聚物 (SAN) 所構成的具極低密度、高孔隙度的氣凝膠。
由於氣凝膠本身機械性能不足,本研究會加入少量水溶性高分子作為“黏著劑”來黏合分散的SAN電紡纖維,其中以添加聚乙烯醇 (PVA) 的效果最佳,在不破壞纖維孔洞的情況下,不僅提升了最大抗拉強度,所含之高極性的官能基也可提升對PM2.5的吸附能力。而透過比較添加不同水解程度的PVA可發現,相比於低水解程度的PVA,於高水解程度下會產生微孔結構,進一步增加氣凝膠的比表面積,可有效提升吸附PM2.5的能力。 在過濾性能方面,所得的複合氣凝膠展現出高於99 %的高過濾效率,僅66 Pa的低壓降。此外,本研究所使用之分散液為水與酒精,相較於傳統氣凝膠的製程,不僅製備步驟更為簡單且對環境友善。透過調控製程參數可製備出具不同結構的氣凝膠,於空氣污染物過濾應用上展現出巨大潛力。 | zh_TW |
| dc.description.abstract | Airborne pollutants, including particulate matter (PM), pathogens, and gases, pose significant health risks. Electrospinning has emerged as an effective method for producing nanofibers that are ideal for separating air pollutants. Porous electrospun fibers with a porous structure were fabricated based on the pore-forming mechanisms and conditions established in the laboratory. By combining aerogel fabrication techniques, the original 2D fibrous membranes were transformed into 3D network structures, significantly enhancing the specific surface area, resulting in aerogels made from styrene-acrylonitrile (SAN) copolymers that feature ultralow density and high porosity.
To address the aerogel's mechanical limitations, a small amount of water-soluble polymer was added as a ''glue'' to bind the dispersed SAN nanofibers. Among the tested polymers, polyvinyl alcohol (PVA) provided the best results, enhancing tensile strength without disrupting the fiber's pore structure. Furthermore, the polar functional groups in PVA contributed to improved PM2.5 adsorption. By comparing the addition of PVA with different degrees of hydrolysis, PVA with a higher degree of hydrolysis formed microporous structures that further increased the specific surface area of the aerogel compared to PVA with a low degree of hydrolysis. Additionally, the higher number of polar functional groups effectively enhanced its ability to adsorb PM2.5. The composite aerogels demonstrated excellent performance with over 99% filtration efficiency and a low-pressure drop of 66 Pa. Furthermore, using water and alcohol as dispersion made the fabrication process simpler and more environmentally friendly than traditional aerogel methods. The aerogels can be tailored for various structures, offering great potential for air pollutant filtration applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:06:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:06:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 v 圖次 ix 表次 xiv 第一章 緒論 1 1.1 前言與研究動機 1 第二章 文獻回顧 2 2.1 靜電紡絲技術 2 2.1.1 概述 2 2.1.2 電紡裝置及原理 2 2.1.3 影響電紡纖維的條件與參數 6 2.2 多孔纖維的成孔機制 8 2.2.1 呼吸圖法 (Breath Figure, BF) 8 2.2.2 蒸氣誘導相分離 (Vapor Induced Phase Separation, VIPS) 10 2.2.3 非溶劑誘導相分離法 (Nonsolvent Induced Phase Separation, NIPS) 11 2.2.4 熱誘導相分離法 (Thermally Induced Phase Separation, TIPS) 12 2.2.5 水溶性溶劑輔助呼吸圖法 (Water-Miscible Solvent Assistant Breath Figure, WMSBF) 13 2.3 氣凝膠介紹 15 2.3.1 概述 15 2.3.2 氣凝膠機械性質的探討 17 2.4 PM2.5空氣過濾應用 21 2.4.1 空氣懸浮粒子介紹 21 2.4.2 空氣懸浮粒子淨化方法 21 2.4.3 影響空氣懸浮粒子過濾效率的因素及機制 23 第三章 實驗內容 25 3.1 實驗材料 25 3.1.1 高分子 25 3.1.2 溶劑與鹽類 26 3.2 電紡裝置 28 3.3 實驗儀器 28 3.4 實驗步驟與儀器原理 29 3.4.1 製備靜電紡絲纖維薄膜 29 3.4.2 製備纖維氣凝膠 30 3.4.3 溶劑蒸氣法 (Solvent Vapor Treatment) 31 3.4.4 空氣懸浮微粒過濾測試 32 3.4.5 場發射掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscopy, FE-SEM) 33 3.4.6 冷凍乾燥機 (Freeze Dryer) 35 3.4.7 接觸角量測儀 (Contact Angle Analyzer) 36 3.4.8 壓汞測孔儀 (Mercury Injection Apparatus) 37 3.4.9 紅外線衰減全反射光譜(Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy, ATR-IR) 38 3.4.10 示差掃描熱量分析儀 (Differential Scanning Calorimetry, DSC) 39 3.4.11 萬能拉伸試驗機 (Universal Tensile Tester, UTM) 40 第四章 結果與討倫 41 4.1 氣凝膠的製備方法 41 4.1.1 靜電紡絲的形貌 42 4.1.2 找尋分散SAN孔洞纖維之攪拌液溶劑 43 4.1.3 調配不同溶劑組合之攪拌溶液 44 4.1.4 SAN孔洞纖維分散液之最佳重量濃度 49 4.1.5 改變纖維形貌製備平滑纖維氣凝膠 51 4.2 各樣品命名方式 52 4.3 改善孔洞纖維氣凝膠的機械性質 54 4.3.1 溶劑蒸氣法 (Solvent Vapor Treatment) 54 4.3.2 加入水溶性高分子 55 4.4 不同水解程度PVA對孔洞纖維氣凝膠形貌、化學組成及機械性質之影響 60 4.4.1 不同水解程度的PVA在複合氣凝膠中的形貌 60 4.4.2 探討複合氣凝膠的化學組成 62 4.4.3 探討複合氣凝膠的機械性質 65 4.5 不同水解程度PVA對孔洞纖維氣凝膠熱性質、親疏水性及孔洞結構變化之影響 68 4.5.1 複合氣凝膠的熱性質分析 68 4.5.2 探討纖維薄膜與各氣凝膠的親疏水性 70 4.5.3 複合氣凝膠及纖維薄膜的孔洞尺寸與結構 71 4.5.4 複合氣凝膠與纖維薄膜之孔隙度及孔徑分布 76 4.6 過濾空氣懸浮微粒PM2.5之應用 79 4.6.1 探討複合氣凝膠之過濾效率 80 4.6.2 複合氣凝膠過濾前後之元素分析 87 4.6.3 探討不同風速對於過濾效率的影響 89 4.6.4 材料過濾性能之文獻比較 92 第五章 結論 93 參考文獻 94 附錄 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 呼吸圖法 | zh_TW |
| dc.subject | 多孔纖維 | zh_TW |
| dc.subject | 氣凝膠 | zh_TW |
| dc.subject | 空氣懸浮微粒PM2.5 | zh_TW |
| dc.subject | Breath figure | en |
| dc.subject | Electrospinning | en |
| dc.subject | PM2.5 filtration | en |
| dc.subject | Aerogel | en |
| dc.subject | Porous fibers | en |
| dc.title | 製備苯乙烯-丙烯腈共聚物多孔纖維氣凝膠應用於 空氣懸浮微粒過濾 | zh_TW |
| dc.title | Preparation of poly(styrene-co-acrylonitrile) porous fiber aerogels for particulate matter filtration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱昱誠;陳錦文;賴偉淇 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Cheng Chiu;Chin-Wen Chen;Wei-Chi Lai | en |
| dc.subject.keyword | 靜電紡絲,呼吸圖法,多孔纖維,氣凝膠,空氣懸浮微粒PM2.5, | zh_TW |
| dc.subject.keyword | Electrospinning,Breath figure,Porous fibers,Aerogel,PM2.5 filtration, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202503030 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
