Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳浩銘zh_TW
dc.contributor.advisorHao Ming Chenen
dc.contributor.author李羿均zh_TW
dc.contributor.authorYi-Chun Leeen
dc.date.accessioned2025-08-05T16:05:41Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] Ju, H.; Badwal, S.; Giddey, S. A Comprehensive Review of Carbon and Hydrocarbon Assisted Water Electrolysis for Hydrogen Production. Appl. Energy 2018, 231, 502–533. DOI: https://doi.org/10.1016/j.apenergy.2018.09.125
[2] Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well Below 2 °C. Nature 2016, 534 (7609), 631–639. DOI: https://doi.org/10.1038/nature18307
[3] National Development Council (Taiwan). Taiwan’s Pathway to Net-Zero Emissions in 2050: Overview of Strategies and Roadmap; Executive Yuan: Taipei, Taiwan, 2022. Available online: https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path (accessed May 17, 2025).
[4] Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35 (20), 16403–16415. DOI: https://doi.org/10.1021/acs.energyfuels.1c02501
[5] Le, P. A.; Trung, V. D.; Nguyen, P. L.; Phung, T. V. B.; Natsuki, J.; Natsuki, T. The Current Status of Hydrogen Energy: An Overview. RSC Adv. 2023, 13 (40), 28262–28287. DOI: https://doi.org/10.1039/D3RA05158G
[6] National Development Council (Taiwan). Taiwan’s 2050 Net-Zero Emissions: Hydrogen Energy Key Strategy Action Plan; Executive Yuan: Taipei, Taiwan, 2022. Available online: https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTQ1Ni81ODQzOGM1Ny1kYmE5LTQxODQtOTc5MS01MTZlMjlkZTEzMTQucGRm&n=MDJf5rCr6IO96Zec6Y215oiw55Wl6KGM5YuV6KiI55WrKOaguOWumuacrCkucGRm&icon=.pdf (accessed May 20, 2025).
[7] Jaradat, M.; Alsotary, O.; Juaidi, A.; Albatayneh, A.; Alzoubi, A.; Gorjian, S. Potential of Producing Green Hydrogen in Jordan. Energies 2022, 15 (23), 9039. DOI: https://doi.org/10.3390/en15239039
[8] Song, J.; Wei, C.; Huang, Z. F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chem. Soc. Rev. 2020, 49 (7), 2196–2214. DOI: https://doi.org/10.1039/C9CS00607A
[9] Park, J.; Lee, S.; Kim, S. Recent Advances in Amorphous Electrocatalysts for Oxygen Evolution Reaction. Front. Chem. 2022, 10, 1030803. DOI: https://doi.org/10.3389/fchem.2022.1030803
[10] Wang, T.; Cao, X.; Jiao, L. Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angew. Chem. 2022, 134 (51), e202213328. DOI: https://doi.org/10.1002/ange.202213328
[11] Xu, Y.; Zhang, B. Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem 2019, 6 (13), 3214–3226. DOI: https://doi.org/10.1002/celc.201900675
[12] Sun, H.; Xu, X.; Fei, L.; Zhou, W.; Shao, Z. Electrochemical Oxidation of Small Molecules for Energy‐Saving Hydrogen Production. Adv. Energy Mater. 2024, 14 (30), 2401242. DOI: https://doi.org/10.1002/aenm.202401242
[13] Deng, C.; Toe, C. Y.; Li, X.; Tan, J.; Yang, H.; Hu, Q.; He, C. Earth‐Abundant Metal‐Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives. Adv. Energy Mater. 2022, 12 (25), 2201047. DOI: https://doi.org/10.1002/aenm.202201047
[14] Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nickel–Molybdenum Nitride Nanoplate Electrocatalysts for Concurrent Electrolytic Hydrogen and Formate Productions. Nat. Commun. 2019, 10 (1), 5335. DOI: https://doi.org/10.1038/s41467-019-13375-z
[15] Yaqoob, L.; Noor, T.; Iqbal, N. A Comprehensive and Critical Review of the Recent Progress in Electrocatalysts for the Ethanol Oxidation Reaction. RSC Adv. 2021, 11 (27), 16768–16804. DOI: https://doi.org/10.1039/D1RA01841H
[16] Xu, J.; Wang, Z. Mechanistic Investigations of Electrochemical Ethanol Oxidation Reaction by In Situ Raman Spectroscopy. ChemElectroChem 2023, 10 (19), e202300370. DOI: https://doi.org/10.1002/celc.202300370
[17] Zeng, Y.; Wang, X.; Hu, Y.; Qi, W.; Wang, Z.; Xiao, M.; Zhu, J. Research Progress of Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Media. Carbon Neutralization 2024, 3 (4), 710–736. DOI: https://doi.org/10.1002/cnl2.152
[18] Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Jung, W. Boosting Ethanol Oxidation by NiOOH–CuO Nano-Heterostructure for Energy-Saving Hydrogen Production and Biomass Upgrading. Appl. Catal., B 2023, 325, 122388. DOI: https://doi.org/10.1016/j.apcatb.2023.122388
[19] Appleby, A. J. From Sir William Grove to Today: Fuel Cells and the Future. J. Power Sources 1990, 29 (1–2), 3–11. DOI: https://doi.org/10.1016/0378-7753(90)80002-U
[20] Kaur, J.; Gupta, R. K.; Kumar, A. Electrocatalytic Ethanol Oxidation Reaction: Recent Progress, Challenges, and Future Prospects. Discov. Nano 2024, 19 (1), 137. DOI: https://doi.org/10.1186/s11671-024-04067-9
[21] Dimos, M. M.; Blanchard, G. J. Evaluating the Role of Pt and Pd Catalyst Morphology on Electrocatalytic Methanol and Ethanol Oxidation. J. Phys. Chem. C 2010, 114 (13), 6019–6026. DOI: https://doi.org/10.1021/jp911076b
[22] Mourdikoudis, S.; Chirea, M.; Altantzis, T.; Pastoriza-Santos, I.; Pérez-Juste, J.; Silva, F.; Liz-Marzán, L. M. Dimethylformamide-Mediated Synthesis of Water-Soluble Platinum Nanodendrites for Ethanol Oxidation Electrocatalysis. Nanoscale 2013, 5 (11), 4776–4784. DOI: https://doi.org/10.1039/C3NR00924F
[23] Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Li, Y. Design of Ultrathin Pt–Mo–Ni Nanowire Catalysts for Ethanol Electrooxidation. Sci. Adv. 2017, 3 (8), e1603068. DOI: https://doi.org/10.1126/sciadv.1603068
[24] Shen, P. K.; Xu, C. Alcohol Oxidation on Nanocrystalline Oxide Pd/C Promoted Electrocatalysts. Electrochem. Commun. 2006, 8 (1), 184–188. DOI: https://doi.org/10.1016/j.elecom.2005.10.013
[25] Li, Z.; Lin, R.; Liu, Z.; Li, D.; Wang, H.; Li, Q. Novel Graphitic Carbon Nitride/Graphite Carbon/Palladium Nanocomposite as a High-Performance Electrocatalyst for the Ethanol Oxidation Reaction. Electrochim. Acta 2016, 191, 606–615. DOI: https://doi.org/10.1016/j.electacta.2016.01.124
[26] Li, Y. S.; He, Y. L.; Yang, W. W. Performance Characteristics of Air-Breathing Anion-Exchange Membrane Direct Ethanol Fuel Cells. Int. J. Hydrogen Energy 2013, 38 (30), 13427–13433. DOI: https://doi.org/10.1016/j.ijhydene.2013.07.042
[27] Vyas, A. N.; Saratale, G. D.; Sartale, S. D. Recent Developments in Nickel Based Electrocatalysts for Ethanol Electrooxidation. Int. J. Hydrogen Energy 2020, 45 (10), 5928–5947. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.218
[28] Fleischmann, M.; Korinek, K.; Pletcher, D. The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31 (1), 39–49. DOI: https://doi.org/10.1016/S0022-0728(71)80040-2
[29] Fleischmann, M.; Korinek, K.; Pletcher, D. The Kinetics and Mechanism of the Oxidation of Amines and Alcohols at Oxide-Covered Nickel, Silver, Copper, and Cobalt Electrodes. J. Chem. Soc., Perkin Trans. 2 1972, (10), 1396–1403. DOI: https://doi.org/10.1039/P29720001396
[30] Ding, Y.; Xue, Q.; Hong, Q. L.; Li, F. M.; Jiang, Y. C.; Li, S. N.; Chen, Y. Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. ACS Appl. Mater. Interfaces 2021, 13 (3), 4026–4033. DOI: https://doi.org/10.1021/acsami.0c20554
[31] Sheng, S.; Ye, K.; Sha, L.; Zhu, K.; Gao, Y.; Yan, J.; Cao, D. Rational Design of Co–SP Nanosheet Arrays as Bifunctional Electrocatalysts for Both Ethanol Oxidation Reaction and Hydrogen Evolution Reaction. Inorg. Chem. Front. 2020, 7 (22), 4498–4506. DOI: https://doi.org/10.1039/D0QI00289E
[32] Barbosa, A. F. B.; Oliveira, V. L.; Van Drunen, J.; Tremiliosi-Filho, G. Ethanol Electro-Oxidation Reaction Using a Polycrystalline Nickel Electrode in Alkaline Media: Temperature Influence and Reaction Mechanism. J. Electroanal. Chem. 2015, 746, 31–38. DOI: https://doi.org/10.1016/j.jelechem.2015.03.024
[33] Shi, J.; Ma, J.; Ma, E.; Li, J.; Hu, Y.; Fan, L.; Cai, W. Electrochemical Alcohol Oxidation Reaction on Precious‐Metal‐Free Catalysts: Mechanism, Activity, and Selectivity. Carbon Neutralization 2024, 3 (2), 285–312. DOI: https://doi.org/10.1002/cnl2.116
[34] Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C. L.; Huang, Y. C.; Wang, S. Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. Chem 2020, 6 (11), 2974–2993. DOI: https://doi.org/10.1016/j.chempr.2020.07.022
[35] Zhu, B.; Dong, B.; Wang, F.; Yang, Q.; He, Y.; Zhang, C.; Li, M.; Ma, Y.; Feng, L. Unraveling a Bifunctional Mechanism for Methanol-to-Formate Electro-Oxidation on Nickel-Based Hydroxides. Nat. Commun. 2023, 14 (1), 1686. DOI: https://doi.org/10.1038/s41467-023-37441-9
[36] Meng, F.; Wu, Q.; Elouarzaki, K.; Luo, S.; Sun, Y.; Dai, C.; Liu, Y.; Wang, Y.; Qi, Z.; Zheng, L.; Li, Z.; Xu, Z. J. Essential Role of Lattice Oxygen in Methanol Electrochemical Refinery toward Formate. Sci. Adv. 2023, 9 (34), eadh9487. DOI: https://doi.org/10.1126/sciadv.adh9487
[37] Cheng, H.; Dong, B.; Liu, Q.; Wang, F. Direct Electrocatalytic Methanol Oxidation on MoO₃/Ni(OH)₂: Exploiting Synergetic Effect of Adjacent Mo and Ni. J. Am. Chem. Soc. 2023, 145 (49), 26858–26862. DOI: https://doi.org/10.1021/jacs.3c09399
[38] Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Chang, S. Y. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6 (5), 299–303. DOI: https://doi.org/10.1002/adem.200300567
[39] Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. Noble-Metal-Based High-Entropy-Alloy Nanoparticles for Electrocatalysis. J. Energy Chem. 2022, 68, 721–751. DOI: https://doi.org/10.1016/j.jechem.2021.12.026
[40] Zhang, R.; Zhao, S.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Minor, A. M. Short-Range Order and Its Impact on the CrCoNi Medium-Entropy Alloy. Nature 2020, 581 (7808), 283–287. DOI: https://doi.org/10.1038/s41586-020-2275-z
[41] Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High‐Entropy Alloy Nanocatalysts. Adv. Funct. Mater. 2019, 29 (50), 1905933. DOI: https://doi.org/10.1002/adfm.201905933
[42] Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Wang, L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal. 2020, 10 (19), 11280–11306. DOI: https://doi.org/10.1021/acscatal.0c03617
[43] Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6 (5), 299–303. DOI: https://doi.org/10.1002/adem.200300567
[44] Hsu, W. L.; Tsai, C. W.; Yeh, A. C.; Yeh, J. W. Clarifying the Four Core Effects of High-Entropy Materials. Nat. Rev. Chem. 2024, 8 (6), 471–485. DOI: https://doi.org/10.1038/s41570-024-00602-5
[45] Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. High-Entropy Alloys in Electrocatalysis: From Fundamentals to Applications. Chem. Soc. Rev. 2023, 52 (23), 8319–8373. DOI: https://doi.org/10.1039/D3CS00557G
[46] Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; Yu, D.; Zachariah, M. R.; Wang, C.; Shahbazian-Yassar, R.; Hu, L. Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. Science 2018, 359 (6383), 1489–1494. DOI: https://doi.org/10.1126/science.aan5412
[47] He, J.; Tong, Y.; Wang, Z.; Zhou, G.; Ren, X.; Zhu, J.; ... Chen, P. Oxygenate-Induced Structural Evolution of High-Entropy Electrocatalysts for Multifunctional Alcohol Electrooxidation Integrated with Hydrogen Production. Proc. Natl. Acad. Sci. U.S.A. 2024, 121 (30), e2405846121. DOI: https://doi.org/10.1073/pnas.2405846121
[48] Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144 (16), 7224–7235. DOI: https://doi.org/10.1021/jacs.1c13740
[49] Hassan, H. B.; Hamid, Z. A. Electrodeposited Ni–Cr₂O₃ Nanocomposite Anodes for Ethanol Electrooxidation. Int. J. Hydrogen Energy 2011, 36 (8), 5117–5127. DOI: http://dx.doi.org/10.1016/j.ijhydene.2011.01.024
[50] Liaqat, R.; Mansoor, M. A.; Iqbal, J.; Jilani, A.; Shakir, S.; Kalam, A.; Wageh, S. Fabrication of Metal (Cu and Cr) Incorporated Nickel Oxide Films for Electrochemical Oxidation of Methanol. Crystals 2021, 11 (11), 1398. DOI: https://doi.org/10.3390/cryst11111398
[51] Bambagioni, V.; Bianchini, C.; Filippi, J.; Oberhauser, W.; Marchionni, A.; Vizza, F.; Innocenti, M. Ethanol Oxidation on Electrocatalysts Obtained by Spontaneous Deposition of Palladium onto Nickel‐Zinc Materials. ChemSusChem 2009, 2 (1), 99–112. DOI: https://doi.org/10.1002/cssc.200800188
[52] Dahale, C.; Srinivasan, S. G.; Mishra, S.; Maiti, S.; Rai, B. Surface Segregation in the AgAuCuPdPt High Entropy Alloy: Insights from Molecular Simulations. Mol. Syst. Des. Eng. 2022, 7 (8), 878–888. DOI: https://doi.org/10.1039/D2ME00045H
[53] Kerdcharoen, T.; Wongchoosuk, C. Carbon Nanotube and Metal Oxide Hybrid Materials for Gas Sensing. In Semiconductor Gas Sensors; Raible, D., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp 386–407.
[54] Van Acker, T.; Theiner, S.; Bolea-Fernandez, E.; Vanhaecke, F.; Koellensperger, G. Inductively Coupled Plasma Mass Spectrometry. Nat. Rev. Methods Primers 2023, 3 (1), 52. DOI: https://doi.org/10.1038/s43586-023-00235-w
[55] Afsarimanesh, N.; Mukhopadhyay, S. C.; Kruger, M. Sensing Technologies for Monitoring of Bone-Health: A Review. Sens. Actuators, A 2018, 274, 165–178. DOI: https://doi.org/10.1016/j.sna.2018.03.027
[56] Pithan, L. On the Role of External Stimuli to Tailor Growth of Organic Thin Films; Universität Tübingen, 2017. DOI: https://doi.org/10.18452/17749
[57] Wang, B.; Chu, S.; Zheng, L.; Li, X.; Zhang, J.; Zhang, F. Application of X‐Ray Absorption Spectroscopy in Electrocatalytic Water Splitting and CO₂ Reduction. Small Sci. 2021, 1 (9), 2100023. DOI: https://doi.org/10.1002/smsc.202100023
[58] Iglesias‐Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero‐Pérez, M. O. Experimental Methods in Chemical Engineering: X‐ray Absorption Spectroscopy—XAS, XANES, EXAFS. Can. J. Chem. Eng. 2022, 100 (1), 3–22. DOI: https://doi.org/10.1002/cjce.24291
[59] Wain, A. J.; Dickinson, E. J. Nanoscale Characteristics of Electrochemical Systems. Front. Nanosci. 2021, 18, 1–48. DOI: https://doi.org/10.1021/ac3031702
[60] Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2022. https://doi.org/10.1002/9781119334064
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98368-
dc.description.abstract氫氣能源具有零碳排放與高能量密度的優勢,是極具潛力的綠色能源,未來可望取代傳統化石燃料以減緩環境污染。其中,水電解為最潔淨的產氫技術,降低反應過程中的能量損耗,減輕陽極端反應動力學障礙,是提升效率的關鍵策略。透過乙醇氧化反應取代傳統電解水陽極的析氧反應(Oxygen Evolution Reaction OER),不僅可顯著降低電解所需電位,亦能產生具經濟價值的陽極產物。高熵材料近年於電催化領域備受關注,因其獨特的多元組成與混亂結構賦予優異的催化活性與穩定性。然而,多數文獻往往僅以巨觀組成符合高熵材料定義為依據,即直接歸因其催化性能於高熵效應,對其實際活性來源缺乏深入探討。本研究採用符合相同定義之非貴金屬中熵材料薄膜NiCrZnMo作為乙醇氧化反應之電催化劑,進一步探討其催化活性來源是否真正來自高熵效應,或源於材料內部更細緻的結構與協同機制。實驗結果顯示,中熵材料薄膜在泡沫鎳基材上展現優異催化活性,起始電位只需要1.28 V vs. RHE,超越目前文獻所發表的非貴金屬催化劑表現;於碳紙基材上則展現優於現階段之OER催化劑的催化表現。於催化劑合成步驟,採用濺鍍技術將多種金屬均勻沉積於基材表面形成分層金屬薄膜,並經高溫熱處理促進原子垂直方向上擴散,成功製備出具有巨觀上三維均勻度之薄膜。經由能量色散光譜(EDS)與X光光電子能譜(XPS)縱深分析,確認元素均勻分散與混合情形。進一步探討催化機制,透過電化學表現確認Ni為主要反應活性位點。藉由臨場拉曼與XPS分析,發現材料表面於反應中產生結構轉變。結合X光吸收光譜(XAS)解析各元素的配位環境,配合電化學結果指出:Mo於催化過程中扮演質子轉移位點;Cr則增強乙醇吸附能力,有利於反應動力學;Zn則誘導Cr共同形成尖晶石結構,穩定催化劑結構並顯著降低腐蝕,提升長時間操作穩定性。
本研究結果顯示,催化劑的優異性能來自元素間的協同效應及結構穩定效應,而非傳統高熵效應本身。此發現對設計穩定且高活性之電催化材料的設計方向,應更注重於協同效應的影響,對開發高效率乙醇氧化反應之催化劑具有重要意義。
zh_TW
dc.description.abstractHydrogen energy is a green energy source with zero carbon emissions and high energy density. Among hydrogen production methods, water electrolysis remains the cleanest approach. Replacing the sluggish oxygen evolution reaction (OER) with the ethanol oxidation reaction (EOR) significantly reduces the electrolysis voltage while generating value-added products at the anode. In this study, we employed a noble metal free medium-entropy materials (MEMs) composed of Ni, Cr, Zn, and Mo as an electrocatalyst for EOR. The catalyst demonstrated an impressively low onset potential of 1.28 V vs. RHE on a nickel foam substrate, outperforming reported state-of-art EOR catalysts. The MEMs catalyst was synthesized via a sputtering technique, followed by thermal annealing to promote atomic diffusion and achieve a medium-entropy structure. Using energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed the uniform elemental distribution. Subsequent mechanistic investigations revealed that Ni serves as the primary active site. In-situ Raman spectroscopy and XPS analyses verified surface reconstruction during the catalytic process. X-ray absorption spectroscopy (XAS) provided insights: Mo functions as a proton transfer mediator that activates Ni even in its divalent state; Cr enhances ethanol adsorption on the surface; and the formation of a Cr-Zn spinel structure improves the catalyst’s long-term electrochemical stability. Unlike the widely held view that entropy effects inherently yield superior catalytic performance, our results highlight that the excellent activity and stability from the synergistic effects among the constituent elements. This work not only presents a high-performance MEMs catalyst for EOR but also offers a new perspective on the role of entropy in catalytic design.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:05:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:05:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 vi
表次 ix
第一章 緒論 1
1.1氫氣能源 1
1.1.1 產氫技術 2
1.1.2 電解水產氫 3
1.1.3 替代電解水陽極反應 5
1.2 乙醇氧化反應(Ethanol Oxidation Reaction, EOR) 6
1.2.1 乙醇氧化電催化劑 6
1.2.2 乙醇氧化反應非貴金屬催化劑機制 9
1.3 中熵材料(Medium-Entropy Materials, MEMs) 14
1.3.1 高熵材料與中熵材料定義 15
1.3.2 材料特性以及催化影響 16
1.3.3 中熵材料製備方式 21
1.3.4 高熵材料在催化領域的應用 22
1.4 研究動機與目的 23
第二章 實驗流程與儀器分析原理 25
2.1實驗流程 25
2.2 實驗藥品 26
2.3 材料製備 26
2.3.1 電解液製備 26
2.3.2 催化劑基材製備 27
2.3.3 中熵材料薄膜催化劑製備 27
2.4 材料鑑定與分析 30
2.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30
2.4.2 能量色散X光光譜儀(Energy-Dispersive X-Ray Spectroscopy, EDS) 31
2.4.3 X光光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS) 32
2.4.4 感應耦合電漿質譜儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 33
2.4.5 高效液相層析法(High Performance Liquid Chromatography, HPLC) 34
2.5 同步輻射 36
2.5.1 X光吸收光譜(X-Ray Absorption Spectroscopy, XAS) 37
2.5.2 X光吸收近邊緣結構(X-Ray Absorption Near Edge Structure, XANES) 39
2.5.3 延伸X光吸收細微結構(Extended X-Ray Absorption Fine Structure, EXAFS) 39
2.6 電化學量測與分析 40
2.6.1 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 41
2.6.2 定電位測量法(Chronoamperometry, CA) 41
2.6.3 定電流測量法(chronopotentiometry, CP) 42
2.6.4 電化學活性面積量測(Electrochemical Active Surface Area, ECSA) 42
第三章 結果與討論 43
3.1 中熵材料薄膜之材料鑑定 43
3.1.1 材料表面形貌 43
3.1.2 中熵材料薄膜元素分布確認 44
3.1.3 薄膜元素比例分析 46
3.2 電催化乙醇氧化反應分析 48
3.2.1 電催化活性確認 48
3.2.2 乙醇氧化反應之產物分析 52
3.2.3 電催化穩定性確認 54
3.3 高催化活性及穩定性之機制探討 59
3.3.1 催化活性位點確認 59
3.3.2 催化活性相之表面變化 60
3.3.3 Mo元素之協同作用 64
3.3.4 Cr元素之協同作用 66
3.3.5 Zn元素之協同作用 67
3.3.6 乙醇氧化反應機制討論 70
第四章 結論 72
參考文獻 73
-
dc.language.isozh_TW-
dc.subject臨場量測zh_TW
dc.subject協同效應zh_TW
dc.subject非貴金屬中熵材料zh_TW
dc.subject電催化zh_TW
dc.subject乙醇氧化反應zh_TW
dc.subjectNon-noble metal medium-entropy materialen
dc.subjectIn situ analysisen
dc.subjectSynergistic effecten
dc.subjectEthanol oxidation reactionen
dc.subjectElectrocatalysisen
dc.title非貴金屬中熵材料於電催化乙醇氧化反應之研究zh_TW
dc.titleInvestigation of Medium-Entropy Noble Metal Free Materials for Electrocatalytic Ethanol Oxidation Reactionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭修偉;姜昌明; 陳効謙;林律吟zh_TW
dc.contributor.oralexamcommitteeHsiu-Wei Cheng;Chang-Ming Jiang;Hsiao-Chien Chen;Lu-Yin Linen
dc.subject.keyword臨場量測,協同效應,非貴金屬中熵材料,電催化,乙醇氧化反應,zh_TW
dc.subject.keywordIn situ analysis,Synergistic effect,Non-noble metal medium-entropy material,Electrocatalysis,Ethanol oxidation reaction,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202502785-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved