Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98363
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蕭旭君zh_TW
dc.contributor.advisorHsu-Chun Hsiaoen
dc.contributor.author方廷宇zh_TW
dc.contributor.authorTing-Yu Fangen
dc.date.accessioned2025-08-04T16:10:31Z-
dc.date.available2025-08-05-
dc.date.copyright2025-08-04-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation0xPARC. Circom Pairing, 2022. [Online; accessed 3. Jan. 2025], Available at https://github.com/yi-sun/circom-pairing.
M. Bellare and S. Goldwasser. Verifiable partial key escrow. In ACM Conferences, pages 78-91. Association for Computing Machinery, New York, NY, USA, Apr. 1997.
M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio, and J. Baylina. Cir-com: A circuit description language for building zero-knowledge applications. IEEE Transactions on Dependable and Secure Computing, 20(6):4733-4751, 2023.
G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications. In Selected Areas in Cryptography, pages 320-337. Springer, Berlin, Germany, 2012.
S. Bowe, J. Grigg, and D. Hopwood. Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019.
R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 494-503, 2002.
I. Cascudo and B. David. SCRAPE: Scalable Randomness Attested by Public En-tities. In Applied Cryptography and Network Security, pages 537-556. Springer, Cham, Switzerland, June 2017.
D. Chaum and T. P. Pedersen. Wallet Databases with Observers. In Advances in Cryptology CRYPTO' 92, pages 89-105. Springer, Berlin, Germany, May 2001.
T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Advances in Cryptology, pages 10-18. Springer, Berlin, Germany, Nov. 2000.
A. Fiat and A. Shamir. How To Prove Yourself: Practical Solutions to Identification and Signature Problems. In Advances in Cryptology - CRYPTO' 86, pages 186-194. Springer, Berlin, Germany, Dec. 2000.
R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct nizks without pcps. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology EUROCRYPT 2013, pages 626-645, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their valid-ity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):690-728, July 1991.
L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. Cryptology ePrint Archive, Paper 2019/458, 2019.
J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010, pages 321-340, Berlin, Heidel-berg, 2010. Springer Berlin Heidelberg.
S. Heidarvand and J. L. Villar. Public Verifiability from Pairings in Secret Shar-ing Schemes. In Selected Areas in Cryptography, pages 294-308. Springer, Berlin, Germany, 2009.
D. Hopwood. The Pasta Curves for Halo 2 and Beyond, Mar. 2024. [Online; accessed 26. May 2025].
I. Hwang, J. Seo, and Y. Song. Concretely efficient lattice-based polynomial com-mitment from standard assumptions. In Annual International Cryptology Confer-ence, pages 414 448. Springer, 2024.
Y. Ishai, H. Su, and D. J. Wu. Shorter and faster post-quantum designated-verifier zksnarks from lattices. In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security, pages 212-234, 2021.
A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polyno-mials and Their Applications. In Advances in Cryptology - ASIACRYPT 2010, pages 177-194. Springer, Berlin, Germany, 2010.
H. Lycklama, A. Viand, N. Avramov, N. Küchler, and A. Hithnawi. Artemis: Effi-cient commit-and-prove snarks for zkml. arXiv preprint arXiv:2409.12055, 2024.
W. Mao. Publicly verifiable partial key escrow. In Information and Communications Security, pages 409-413. Springer, Berlin, Germany, June 2005.
S. Mashahdi, B. Bagherpour, and A. Zaghian. A non-interactive (t, n)-publicly ver-ifiable multi-secret sharing scheme. Des. Codes Cryptogr., 90(8):1761-1782, Aug. 2022.
P. N. Minh, K. Nguyen, W. Susilo, and K. Nguyen-An. Publicly verifiable secret sharing: Generic constructions and lattice-based instantiations in the standard model, 2025.
ol labs. Kimchi Proof System, 2019. [Online; accessed 17. Feb. 2025], Available at https://github.com/o1-labs/proof-systems.
ol labs. oljs, 2021. [Online; accessed 19. Feb. 2025], Available at https: //github.com/ol-labs/oljs.
J.-L. Pons. Pollard's kangaroo for SECPK1, Apr. 2020. [Online; accessed 3. Jul. 2025], Available at https://github.com/JeanLucPons/Kangaroo.
A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier's cryptosys-tem. In WEWORC 2005-Western European Workshop on Research in Cryptology, pages 98-108. Gesellschaft für Informatik eV, 2005.
B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its applica-tion to electronic voting. In M. Wiener, editor, Advances in Cryptology - CRYPTO' 99, pages 148-164, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613, Nov. 1979.
A. Shamir. Partial key escrow: A new approach to software key escrow. In Key escrow conference, 1995.
M. Stadler. Publicly Verifiable Secret Sharing. In Advances in Cryptology EU-ROCRYPT '96, pages 190-199. Springer, Berlin, Germany, July 2001.
C. Tang, D. Pei, Z. Liu, and Y. He. Non-interactive and information-theoretic secure publicly verifiable secret sharing. Cryptology ePrint Archive, Paper 2004/201, 2004.
United Kingdom Parliament. Online Safety Act 2023. UK Public General Act, c. 50, 2023.
United Kingdom Parliament. Investigatory Powers (Amendment) Act 2024. UK Public General Act, c. 9, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98363-
dc.description.abstract可公開驗證的秘密分享 (Publicly Verifiable Secret Sharing, PVSS) 是一種重要的密碼學元件,擁有著許多的應用。然而,在某些 PVSS 的協定中,無效份額的存在會阻止秘密重建的可行性,進而限制其在特定情境下的應用。為了解決這個限制,我們引入了有容錯性的可公開驗證秘密分享 (Fault-Tolerant Publicly Verifiable Secret Sharing, FT-PVSS) 的概念,目的在確保能在份額中有一部份無效時仍能有效進行秘密重建。我們的貢獻包含一個基於多項式承諾 (Polynomial Commitment) 與零知識證明系統 (zk-SNARK) 而成的 FT-PVSS 協定。此外,我們透過將 FT-PVSS 應用於一個新的部分金鑰託管 (Partial Key Escrow) 協定,展示了其實際效益。由此產生的解決方案繼承了容錯特性,使其在更容易發生錯誤的現實世界環境中更加穩健。zh_TW
dc.description.abstractPublicly Verifiable Secret Sharing (PVSS) is an important cryptographic primitive with many applications. However, in some PVSS constructions, the presence of invalid shares can prevent the secret from being reconstructed, hindering its applicability in certain use cases. To overcome this limitation, we introduce the concept of Fault-Tolerant Publicly Verifiable Secret Sharing (FT-PVSS), designed to ensure that secret reconstruction can proceed efficiently, even if a subset of the shares are corrupted. Our contribution includes an FT-PVSS constructed by combining a Polynomial Commitment scheme with the capabilities of zk-SNARK proof systems. Furthermore, we demonstrate a practical benefit of FT-PVSS by applying it to a new Partial Key Escrow scheme. This resulting scheme inherits the fault-tolerant property, making it more robust in a real-world setting where errors are more likely to occur.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:10:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-04T16:10:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 Preliminaries 9
Section 3.1 Shamir’s Secret Sharing 9
Section 3.2 Polynomial Commitment 10
Section 3.3 zk-SNARK 11
Section 3.4 oljs 13
Section 3.5 Publicly Verifiable Secret Sharing 14
Section 3.6 Verifiable Partial Key Escrow for Diffie-Hellman 17
Chapter 4 Problem Formulation 19
Chapter 5 Proposed Solution 23
Section 5.1 PC.Verify in zk-SNARK 23
Section 5.2 Public Key Encryption in zk-SNARK 24
Section 5.3 FT-PVSS Construction 25
Section 5.4 Verifiable Partial Key Escrow from FT-PVSS 27
Chapter 6 Security Analysis 31
Section 6.1 Circuit POPE 31
Section 6.2 Circuit PoSS 32
Section 6.3 Circuit PoD 33
Section 6.4 Circuit POKE 33
Section 6.5 Secrecy of FT-PVSS 34
Chapter 7 Implementation 37
Section 7.1 Halo Polynomial Commitment on oljs 37
Section 7.2 FT-PVSS on oljs 38
Section 7.3 Verifiable Partial Key Escrow on oljs 39
Chapter 8 Evaluation 41
Section 8.1 Execution-time experiments 41
Section 8.2 Comparison to SCRAPE 44
Chapter 9 Conclusion 51
References 53
-
dc.language.isoen-
dc.subject部分金鑰託管zh_TW
dc.subject可公開驗證的秘密分享zh_TW
dc.subjectZK-SNARKzh_TW
dc.subjectPartial Key Escrowen
dc.subjectPublicly Verifiable Secret Sharingen
dc.subjectZK-SNARKen
dc.title有容錯性的可公開驗證的秘密分享與其在部分金鑰託管上的應用zh_TW
dc.titleFault-Tolerant Publicly Verifiable Secret Sharing and Its Application in Partial Key Escrowen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊柏因;陳昱圻;游家牧zh_TW
dc.contributor.oralexamcommitteeBo-Yin Yang;Yu-Chi Chen;Chia-Mu Yuen
dc.subject.keyword可公開驗證的秘密分享,ZK-SNARK,部分金鑰託管,zh_TW
dc.subject.keywordPublicly Verifiable Secret Sharing,ZK-SNARK,Partial Key Escrow,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202502014-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2025-08-05-
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf1.28 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved