Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁儷禎zh_TW
dc.contributor.advisorLi-Jen Wengen
dc.contributor.author陳宥霖zh_TW
dc.contributor.authorYou-Lin Chenen
dc.date.accessioned2025-08-04T16:09:09Z-
dc.date.available2025-08-05-
dc.date.copyright2025-08-04-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationAsparouhov, T., & Muthén, B. (2010). Simple second order chi-square correction. Retrieved from https://www.statmodel.com/download/WLSMV_new_chi21.pdf
Arruda, E. H., & Bentler, P. M. (2017). A regularized GLS for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 657-665. https://doi.org/10.1080/10705511.2017.1318392
Bandalos, D. L. & Leite, W. (2013). Use of Monte Carlo studies in structural equation modeling research. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 625-666). Information Age Publishing.
Benson, J., & Fleishman, J. A. (1994). The robustness of maximum likelihood and distribution-free estimators to non-normality in confirmatory factor analysis. Quality and Quantity, 28(2), 117-136. https://doi.org/10.1007/BF01102757
Bentler, P. M. (1983a). Simultaneous equation systems as moment structure models: With an introduction to latent variable models. Journal of Econometrics, 22(1-2), 13-42. https://doi.org/10.1016/0304-4076(83)90092-1
Bentler, P. M. (1983b). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures. Psychometrika, 48(4), 493-517. https://doi.org/10.1007/BF02293875
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238
Bentler, P. M. (2006). EQS 6 structural equations program manual. Multivariate Software. Retrieved from https://mvsoft.com/wp-content/uploads/2021/04/EQS_6_Prog_Manual_422pp.pdf
Bentler, P. M. (2007). Can scientifically useful hypotheses be tested with correlations? American Psychologist, 62(8), 772-782. https://doi.org/10.1037/0003-066X.62.8.772
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606. https://doi.org/10.1037/0033-2909.88.3.588
Bentler, P. M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P. R. Krishnaiah (Ed.), Multivariate analysis VI (pp. 9-42). Elsevier Science Publishers.
Bentler, P. M., & Savalei, V. (2010). Analysis of correlation structures: Current status and open problems. In S. Kolenikov, D. Steinley, & L. Thombs (Eds.), Statistics in the social sciences: Current methodological developments (pp. 1-36). John Wiley & Sons.
Bentler, P. M., & Yuan, K. H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34(2), 181-197. https://doi.org/10.1207/S15327906Mb340203
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84. https://doi.org/10.1027/1614-2241/a000057
Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons. http://dx.doi.org/10.1002/9781118619179
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205-229. https://doi.org/10.1177/0049124192021002004
Breckler, S. J. (1990). Applications of covariance structure modeling in psychology: Cause for concern? Psychological Bulletin, 107(2), 260-273. https://doi.org/10.1037/0033-2909.107.2.260
Brosseau-Liard, P. E., & Savalei, V. (2014). Adjusting incremental fit indices for nonnormality. Multivariate Behavioral Research, 49(5), 460-470. https://doi.org/10.1080/00273171.2014.933697
Brosseau-Liard, P. E., Savalei, V., & Li, L. (2012). An investigation of the sample performance of two nonnormality corrections for RMSEA. Multivariate Behavioral Research, 47(6), 904-930. https://doi.org/10.1080/00273171.2012.715252
Brown, T. A. (2006). Confirmatory factor analysis for applied research. The Guilford Press.
Browne, M. W. (1977). The analysis of patterned correlation matrices by generalized test squares. British Journal of Mathematical and Statistical Psychology, 30(1), 113-124. https://doi.org/10.1111/j.2044-8317.1977.tb00730.x
Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in applied multivariate analysis (pp. 72-141). Cambridge University Press.
Browne, M. W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62-83. https://doi.org/10.1111/j.2044-8317.1984.tb00789.x
Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230-258. https://doi.org/10.1177/0049124192021002005
Browne, M. W., & Shapiro, A. (1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions. Linear Algebra and its Applications, 82, 169-176. https://doi.org/10.1016/0024-3795(86)90150-3
Browne, M. W., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variate models. British Journal of Mathematical and Statistical Psychology, 41(2), 193-208. https://doi.org/10.1111/j.2044-8317.1988.tb00896.x
Cain, M. K., Zhang, Z., & Yuan, K. H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716-1735. https://doi.org/10.3758/s13428-016-0814-1
Chan, W., Yung, Y. F., & Bentler, P. M. (1995). A note on using an unbiased weight matrix in the ADF test statistic. Multivariate Behavioral Research, 30(4), 453-459. https://doi.org/10.1207/s15327906mbr3004_1
Chen, Y. L., & Weng, L. J. (2023, October). Improving the standard error estimates of the two-stage asymptotically distribution-free method in covariance structure analysis. Annual Meeting of the Taiwanese Psychological Association, Hsinchu, Taiwan.
Cheung, M. W. L., & Chan, W. (2004). Testing dependent correlation coefficients via structural equation modeling. Organizational Research Methods, 7(2), 206-223. https://doi.org/10.1177/1094428104264024
Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40-64. https://doi.org/10.1037/1082-989X.10.1.40
Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for non‐normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44(2), 347-357. https://doi.org/10.1111/j.2044-8317.1991.tb00966.x
Chun, S. Y., Browne, M. W., & Shapiro, A. (2018). Modified distribution-free goodness-of-fit test statistic. Psychometrika, 83(1), 48-66. https://doi.org/10.1007/s11336-017-9574-9
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105(2), 317-327. https://doi.org/10.1037/0033-2909.105.2.317
Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and the “problem” of sample size: A clarification. Psychological Bulletin, 109(3), 512-519. https://doi.org/10.1037/0033-2909.109.3.512
Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37(1), 1-36. https://doi.org/10.1207/S15327906MBR3701_01
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16-29. https://doi.org/10.1037/1082-989X.1.1.16
de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients. Journal of Econometrics, 22(1-2), 113-137. https://doi.org/10.1016/0304-4076(83)90096-9
DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23(3), 225-241. https://doi.org/10.1177/073428290502300303
Du, H., & Bentler, P. M. (2022a). Distributionally weighted least squares in structural equation modeling. Psychological Methods, 27(4), 519-540. https://doi.org/10.1037/met0000388
Du, H., & Bentler, P. M. (2022b). 40-year old unbiased distribution free estimator reliably improves SEM statistics for nonnormal data. Structural Equation Modeling: A Multidisciplinary Journal, 29(6), 872-887. https://doi.org/10.1080/10705511.2022.2063870
Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling, 7(3), 356-410. https://doi.org/10.1207/S15328007SEM0703_2
Green, T. (2016). A methodological review of structural equation modelling in higher education research. Studies in Higher Education, 41(12), 2125-2155. https://doi.org/10.1080/03075079.2015.1021670
Guo, B., Perron, B. E., & Gillespie, D. F. (2009). A systematic review of structural equation modelling in social work research. British Journal of Social Work, 39(8), 1556-1574. https://doi.org/10.1093/bjsw/bcn101
Hayakawa, K. (2019). Corrected goodness-of-fit test in covariance structure analysis. Psychological Methods, 24(3), 371-389. https://doi.org/10.1037/met0000180
Herzog, W., Boomsma, A., & Reinecke, S. (2007). The model-size effect on traditional and modified tests of covariance structures. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 361-390. https://doi.org/10.1080/10705510701301602
Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and meta-analysis. Sociological Methods & Research, 26(3), 329-367. https://doi.org/10.1177/0049124198026003003
Hsu, P. L. (1949). The limiting distribution of functions of sample means and applications to testing hypotheses. In J. Neyman (Ed.), Proceedings of the First Berkeley Symposium in Mathematical Statistics and Probability (pp. 359-402). University of California Press.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112(2), 351-362. https://doi.org/10.1037/0033-2909.112.2.351
Huang, Y., & Bentler, P. M. (2015). Behavior of asymptotically distribution free test statistics in covariance versus correlation structure analysis. Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 489-503. https://doi.org/10.1080/10705511.2014.954078
Isserlis, L. (1916). On certain probable errors and correlation coefficients of multiple frequency distributions with skew regression. Biometrika, 11(3), 185-190. https://www.jstor.org/stable/2331846
Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14(1), 6-23. https://doi.org/10.1037/a0014694
Jalal, S., & Bentler, P. M. (2018). Using Monte Carlo normal distributions to evaluate structural models with nonnormal data. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 541-557. https://doi.org/10.1080/10705511.2017.1390753
Jennrich, R. I. (1970). An asymptotic χ2 test for the equality of two correlation matrices. Journal of the American Statistical Association, 65(330), 904-912. https://doi.org/10.1080/01621459.1970.10481133
Jiang, G., & Yuan, K. H. (2017). Four new corrected statistics for SEM with small samples and nonnormally distributed data. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 479-494. https://doi.org/10.1080/10705511.2016.1277726
Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), 443-482. https://doi.org/10.1007/BF02289658
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(2), 183-202. https://doi.org/10.1007/BF02289343
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57(2), 239-251. https://doi.org/10.1093/biomet/57.2.239
Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43(4), 443-477. https://doi.org/10.1007/BF02293808
Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research, 19(4), 404-416. https://doi.org/10.2307/3151714
Kaplan, D. (1988). The impact of specification error on the estimation, testing, and improvement of structural equation models. Multivariate Behavioral Research, 23(1), 69-86. https://doi.org/10.1207/s15327906mbr2301_4
Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). The Guilford Press.
Lee, S. Y. (1985). Analysis of covariance and correlation structures. Computational Statistics & Data Analysis, 2(4), 279-295. https://doi.org/10.1016/0167-9473(85)90002-7
Lee, S. Y., & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 44(1), 99-113. https://doi.org/10.1007/BF02293789
Leite, W. L., Bandalos, D. L., & Shen, Z. (2023). Simulation methods in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed., pp. 110-127). The Guilford Press.
Li, C. H. (2016). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychological Methods, 21(3), 369-387. https://doi.org/10.1037/met0000093
MacCallum, R. C. (2003). 2001 presidential address: Working with imperfect models. Multivariate Behavioral Research, 38(1), 113-139. https://doi.org/10.1207/S15327906MBR3801_5
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201-226. https://doi.org/10.1146/annurev.psych.51.1.201
Magnus, J. R., & Neudecker, H. (2019). Matrix differential calculus with applications in statistics and econometrics (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119541219
McDonald, R. P. (1975). Testing pattern hypotheses for correlation matrices. Psychometrika, 40(2), 253-255. https://doi.org/10.1007/BF02291570
McDonald, R. P. (2010). Structural models and the art of approximation. Perspectives on Psychological Science, 5(6), 675-686. https://doi.org/10.1177/1745691610388766
McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82. https://doi.org/10.1037/1082-989X.7.1.64
McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological Bulletin, 107(2), 247-255. https://doi.org/10.1037/0033-2909.107.2.247
McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for confirmatory factor analysis models. Psychological Methods, 28(1), 61-88. https://doi.org/10.1037/met0000425
Mels, G. (2000). Statistical methods for correlation structures [Unpublished doctoral dissertation]. University of Port Elizabeth.
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156-166. https://doi.org/10.1037/0033-2909.105.1.156
Mooijaart, A. (1985). A note on computational efficiency in asymptotically distribution-free correlational models. British Journal of Mathematical and Statistical Psychology, 38(1), 112-115. https://doi.org/10.1111/j.2044-8317.1985.tb00819.x
Mooijaart, A., & Bentler, P. M. (1985). The weight matrix in asymptotic distribution-free methods. British Journal of Mathematical and Statistical Psychology, 38(2), 190-196. https://doi.org/10.1111/j.2044-8317.1985.tb00833.x
Muthén, B. (2002). Using Mplus Monte Carlo simulation in practice: A note one assessing estimation quality and power in latent variable models. Retrieved from https://www.statmodel.com/download/webnotes/mc1.pdf
Muthén, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38(2), 171-189. https://doi.org/10.1111/j.2044-8317.1985.tb00832.x
Muthén, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45(1), 19-30 https://doi.org/10.1111/j.2044-8317.1992.tb00975.x
Nel, D. G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. Linear Algebra and Its Applications, 67, 137-145. https://doi.org/10.1016/0024-3795(85)90191-0
Nevitt, J., & Hancock, G. R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39(3), 439-478. https://doi.org/10.1207/S15327906MBR3903_3
Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling, 7(4), 557-595. https://doi.org/10.1207/S15328007SEM0704_3
Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling, 8(2), 287-312. https://doi.org/10.1207/S15328007SEM0802_7
Preacher, K. J. (2006). Testing complex correlational hypotheses with structural equation models. Structural Equation Modeling, 13(4), 520-543. https://doi.org/10.1207/s15328007sem1304_2
R Core Team (2023). R: A language and environment for statistical computing (Version 4.2.3) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Raykov, T. (2000). On the large-sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models. Structural Equation Modeling, 7(3), 431-441. https://doi.org/10.1207/S15328007SEM0703_4
Raykov, T. (2005). Bias-corrected estimation of noncentrality parameters of covariance structure models. Structural Equation Modeling, 12(1), 120-129. https://doi.org/10.1207/s15328007sem1201_6
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. http://doi.org/10.18637/jss.v048.i02
Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Sage Publications.
Satterthwaite, F. E. (1941). Synthesis of variance. Psychometrika, 6(5), 309-316. https://doi.org/10.1007/BF02288586
Savalei, V. (2010). Expected versus observed information in SEM with incomplete normal and nonnormal data. Psychological Methods, 15(4), 352-367. https://doi.org/10.1037/a0020143
Savalei, V. (2014). Understanding robust corrections in structural equation modeling. Structural Equation Modeling, 21(1), 149-160. https://doi.org/10.1080/10705511.2013.824793
Savalei, V. (2018). On the computation of the RMSEA and CFI from the mean-and-variance corrected test statistic with nonnormal data in SEM. Multivariate Behavioral Research, 53(3), 419-429. https://doi.org/10.1080/00273171.2018.1455142
Savalei, V. (2021). Improving fit indices in structural equation modeling with categorical data. Multivariate Behavioral Research, 56(3), 390-407. https://doi.org/10.1080/00273171.2020.1717922
Savalei, V., & Rhemtulla, M. (2013). The performance of robust test statistics with categorical data. British Journal of Mathematical and Statistical Psychology, 66(2), 201-223. https://doi.org/10.1111/j.2044-8317.2012.02049.x
Seber, G. A. F., & Lee, A. J. (2003). Linear regression analysis (2nd ed.). John Wiley & Sons.
Shapiro, A. (1985). Asymptotic equivalence of minimum discrepancy function estimators to GLS estimators. South African Statistical Journal, 19(1), 73-81. https://hdl.handle.net/10520/AJA0038271X_810
Shapiro, A., & Browne, M. W. (1990). On the treatment of correlation structures as covariance structures. Linear Algebra and Its Applications, 127, 567-587. https://doi.org/10.1016/0024-3795(90)90362-G
Steiger, J. H. (1980a). Testing pattern hypotheses on correlation matrices: Alternative statistics and some empirical results. Multivariate Behavioral Research, 15(3), 335-352. https://doi.org/10.1207/s15327906mbr1503_7
Steiger, J. H. (1980b). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245-251. https://doi.org/10.1037/0033-2909.87.2.245
Steiger, J. (1994). Factor analysis in the 1980’s and the 1990’s: Some old debates and some new developments. In I. Borg & P. Mohler (Eds.), Trends and perspectives in empirical social research (pp. 201-223). De Gruyter. https://doi.org/10.1515/9783110887617.201
Steiger, J. H. (2005). Comparing correlations: Pattern hypothesis tests between and/or within independent samples. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 377-414). Lawrence Erlbaum Associates.
Steiger, J. H. (2016). Notes on the Steiger–Lind (1980) handout. Structural Equation Modeling: A Multidisciplinary Journal, 23(6), 777-781. https://doi.org/10.1080/10705511.2016.1217487
Steiger, J. H., & Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. British Journal of Mathematical and Statistical Psychology, 35(2), 208-215. https://doi.org/10.1111/j.2044-8317.1982.tb00653.x
Steiger, J. H., & Hakstian, A. R. (1983). A historical note on the asymptotic distribution of correlations. British Journal of Mathematical and Statistical Psychology, 36(1), 157. https://doi.org/10.1111/j.2044-8317.1983.tb00771.x
Steiger, J. H., & Lind, J. C. (1980, May). Statistically-based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential Chi-square statistics. Psychometrika, 50(3), 253-263. https://doi.org/10.1007/BF02294104
Tanaka, J. S. (1984). Some results on the estimation of covariance structure models. [Unpublished doctoral dissertation]. University of California, Los Angeles.
Tanaka, J. S., & Bentler, P. M. (1985). Quasi-likelihood estimation in asymptotically efficient covariance structure models. American Statistical Association: 1984 Proceedings of the Social Statistics Section, 658-662.
Tian, Y., & Yuan, K. H. (2019). Mean and variance corrected test statistics for structural equation modeling with many variables. Structural Equation Modeling: A Multidisciplinary Journal, 26(6), 827-846. https://doi.org/10.1080/10705511.2019.1598865
Tong, X., & Bentler, P. M. (2013). Evaluation of a new mean scaled and moment adjusted test statistic for SEM. Structural Equation Modeling: A Multidisciplinary Journal, 20(1), 148-156. https://doi.org/10.1080/10705511.2013.742403
Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48(3), 465-471. https://doi.org/10.1007/BF02293687
West, S. G., Wu, W., McNeish, D., & Savord, A. (2023). Model fit in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed., pp. 184-205). The Guilford Press.
Weston, R., Gore, P. A., Jr., Chan, F., & Catalano, D. (2008). An introduction to using structural equation models in rehabilitation psychology. Rehabilitation Psychology, 53(3), 340-356. https://doi.org/10.1037/a0013039
Williams, E. J. (1959). Regression analysis. Wiley.
Yang, M., & Yuan, K. H. (2019). Optimizing ridge generalized least squares for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 24-38. https://doi.org/10.1080/10705511.2018.1479853
Yang, M., Jiang, G., & Yuan, K. H. (2018). The performance of ten modified rescaled statistics as the number of variables increases. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 414-438. https://doi.org/10.1080/10705511.2017.1389612
Yang, T. (2015). Comparing the conventional and bootstrap estimators of noncentrality parameter in structural equation modeling [Unpublished master’s thesis]. National Taiwan University.
Yuan, K. H. (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40(1), 115-148. https://doi.org/10.1207/s15327906mbr4001_5
Yuan, K. H., & Bentler, P. M. (1997a). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92(438), 767-774. https://doi.org/10.1080/01621459.1997.10474029
Yuan, K. H., & Bentler, P. M. (1997b). Improving parameter tests in covariance structure analysis. Computational Statistics & Data Analysis, 26(2), 177-198. https://doi.org/10.1016/S0167-9473(97)00025-X
Yuan, K. H., & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modeling. British Journal of Mathematical and Statistical Psychology, 51(2), 289-309. https://doi.org/10.1111/j.2044-8317.1998.tb00682.x
Yuan, K. H., & Bentler, P. M. (1999). F tests for mean and covariance structure analysis. Journal of Educational and Behavioral Statistics, 24(3), 225-243. https://doi.org/10.2307/1165323
Yuan, K. H., & Chan, W. (2016). Structural equation modeling with unknown population distributions: Ridge generalized least squares. Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 163-179. https://doi.org/10.1080/10705511.2015.1077335
Yuan, K. H., Jiang, G., & Yang, M. (2017). Mean and mean-and-variance corrections with big data. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 214-229. https://doi.org/10.1080/10705511.2017.1379012
Yuan, K. H., & Kano, Y. (2018). Meta-analytical SEM: Equivalence between maximum likelihood and generalized least squares. Journal of Educational and Behavioral Statistics, 43(6), 693-720. https://doi.org/10.3102/1076998618787799
Yuan, K. H., Yang, M., & Jiang, G. (2017). Empirically corrected rescaled statistics for SEM with small N and large P. Multivariate Behavioral Research, 52(6), 673-698. https://doi.org/10.1080/00273171.2017.1354759
Yung, Y. F., & Bentler, P. M. (1994). Bootstrap‐corrected ADF test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 47(1), 63-84. https://doi.org/10.1111/j.2044-8317.1994.tb01025.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98357-
dc.description.abstract非常態資料經常出現於實徵研究中。在共變結構分析(covariance structure analysis,簡稱CSA),亦即建基於樣本共變數抽樣分配的結構方程模型(structural equation modeling,簡稱SEM),Browne (1984)提出之漸進自由分配估計方法(asymptotically distribution-free,簡稱ADF)為處理非常態資料上之一重大貢獻。然而,ADF需要極大的樣本數方能得到可靠的分析結果。在立基於樣本相關係數抽樣分配的SEM,或稱相關結構分析(correlation structure analysis,簡稱RSA),Steiger與Hakstian(1982)提出兩階段ADF(two-stage ADF,簡稱TADF)估計法,以期改善ADF檢定統計量於有限樣本中之表現。TADF先以簡單的估計方法得到基於模型再製動差(model-reproduced moments)所估計的樣本動差之漸進共變數矩陣(asymptotic covariance matrix of sample moments,簡稱ACOV)。第二階段以此結構化之ACOV估計值進行ADF。目前僅有的少數RSA模擬研究(如Bentler & Savalei, 2010; Mels, 2000)顯示,TADF之表現優於ADF與再加權最小平方法結合強韌校正(reweighted least squares with robust corrections,簡稱RLS-C)。本研究將 TADF 延伸至CSA,系統性探討TADF在非常態資料與有限樣本下於CSA與RSA之表現。在ADF之外,本研究亦將TADF的表現與SEM中其他處理非常態資料的方法進行表現,包括CSA中的最大概似法結合強韌校正(maximum likelihood with robust corrections)與新發展的分配加權最小平方法(distributionally weighted least squares method; Du & Bentler, 2022a),以及RSA中的RLS-C。本論文分別針對CSA與RSA進行模擬研究,此二模擬研究皆考量兩母群模型,並系統性操弄樣本人數與變項分布。結果顯示,在CSA與RSA中,TADF能改善ADF的有限樣本表現,包括較少的不收斂與不適當解、更準確的參數與標準誤估計值,以及較佳的檢定統計量之型一錯誤控制(Type I error control)。與CSA和RSA中其他處理非常態資料的方法相比,TADF在參數估計上的表現相似,且其檢定統計量之實徵型一錯誤率表現優於或相當於其他方法。然而,當樣本數不足時,TADF 傾向低估參數估計值的實際波動情形。重抽樣方法(resampling methods)與Yuan-Bentler(1997b)校正可望改善TADF之標準誤估計以提升此方法的整體表現。結合改善後的標準誤估計,TADF期可為SEM應用中處理常見之非常態資料與有限樣本的推薦方法。zh_TW
dc.description.abstractDeviation from normality is commonly observed in empirical data. In covariance structure analysis (CSA), the structural equation modeling (SEM) based on the asymptotic distribution of covariances, the asymptotically distribution-free (ADF) estimation method proposed by Browne (1984) stands as a landmark contribution for dealing with nonnormal data. Yet ADF requires extremely large samples to yield reliable parameter estimates, associated standard errors, and model test statistics. In correlation structure analysis (RSA), the SEM based on the asymptotic distribution of correlations, Steiger and Hakstian (1982) proposed the two-stage ADF (TADF) estimation method in hope of improving the finite sample behavior of ADF test statistics. TADF first employs a simple estimation method to obtain an estimate of the asymptotic covariance matrix of sample moments (ACOV) based on model-reproduced moments. In the second stage, TADF implements ADF with this structured ACOV estimate. TADF has been found to outperform ADF and reweighted least squares with robust corrections (RLS-C) in RSA under restricted conditions (e.g., Bentler & Savalei, 2010; Mels, 2000). In this study, TADF was extended to CSA and the behavior of TADF with nonnormal data under finite samples was systematically investigated in both CSA and RSA. In addition to ADF, the performance of TADF was also compared to other recommended methods for dealing with nonnormal data in SEM. These methods included maximum likelihood with robust corrections and the newly developed distributionally weighted least squares method (Du & Bentler, 2022a) in CSA and RLS-C in RSA. Two simulation studies were conducted, focusing on CSA and RSA, respectively. Both simulations considered two population models and systematically varied sample size and distribution of variables. TADF was found to improve the finite sample behavior of ADF in both CSA and RSA, showing fewer nonconvergence and improper solutions, more accurate parameter and standard error estimates, and better Type I error control of test statistics. Compared to other methods for dealing with nonnormal data in CSA and RSA, TADF behaved similarly in parameter estimation and yielded better or comparable empirical Type I error rates of test statistics. Yet TADF tended to underestimate the empirical fluctuation of parameter estimates when sample size was insufficient. Resampling methods and the Yuan-Bentler (1997b) correction were potential strategies to improve the estimation of standard errors in TADF to enhance the overall performance of this method. With the improved standard error estimates, TADF presents a promising approach for handling nonnormal data with finite sample sizes frequently encountered in SEM applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:09:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-04T16:09:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Goals of the Dissertation 5
Chapter 2 Estimation and Model Evaluation in Covariance Structure Analysis 9
2.1 Statistical Theory for Covariance Structure Analysis 9
2.2 ADF, ML, and DLS Estimation Methods in Covariance Structure Analysis 11
2.3 The TADF Estimation Method in Covariance Structure Analysis 17
2.4 Model Evaluation in Covariance Structure Analysis 23
Chapter 3 Estimation and Model Evaluation in Correlation Structure Analysis 31
3.1 Statistical Theory for Correlation Structure Analysis 31
3.2 ADF and RLS Estimation Methods in Correlation Structure Analysis 35
3.3 The TADF Estimation Method in Correlation Structure Analysis 38
3.4 Model Evaluation in Correlation Structure Analysis 41
Chapter 4 Method 45
4.1 Simulation Conditions 46
4.2 Data Generation and Data Analysis 50
4.3 Evaluation Criteria 52
Chapter 5 Performance of the Two-Stage Asymptotically Distribution-Free Estimation Method in Covariance Structure Analysis 55
5.1 Nonconvergence and Improper Solutions in Covariance Structure Analysis 58
5.2 Parameter and Standard Error Estimates in Covariance Structure Analysis 58
5.3 Test Statistics in Covariance Structure Analysis 73
5.4 Model Fit Indices in Covariance Structure Analysis 79
5.5 Summary of Findings in Covariance Structure Analysis 82
Chapter 6 Performance of the Two-Stage Asymptotically Distribution-Free Estimation Method in Correlation Structure Analysis 85
6.1 Nonconvergence and Improper Solutions in Correlation Structure Analysis 85
6.2 Parameter and Standard Error Estimates in Correlation Structure Analysis 89
6.3 Test Statistics in Correlation Structure Analysis 97
6.4 Model Fit Indices in Correlation Structure Analysis 104
6.5 Summary of Findings in Correlation Structure Analysis 106
Chapter 7 General Discussion 109
7.1 Discussion on Main Findings From Covariance Structure Analysis 109
7.2 Discussion on Main Findings From Correlation Structure Analysis 112
7.3 Limitations and Future Research Directions 115
7.4 Practical Implications and Conclusions 117
References 119
Appendices 137
Appendix A. Detailed Results for Simulation A 137
Appendix B. Detailed Results for Simulation B 175
-
dc.language.isoen-
dc.subject共變結構分析zh_TW
dc.subject結構方程模型zh_TW
dc.subject漸進自由分配估計方法zh_TW
dc.subject非常態資料zh_TW
dc.subject相關結構分析zh_TW
dc.subjectcorrelation structure analysisen
dc.subjectnonnormal dataen
dc.subjectasymptotically distribution-free estimation methoden
dc.subjectcovariance structure analysisen
dc.subjectstructural equation modelingen
dc.title結構方程模型兩階段漸進自由分配估計方法之評估zh_TW
dc.titleEvaluating Two-Stage Asymptotically Distribution-Free Estimation Method in Structural Equation Modelingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee丁承;李俊霆;李澄賢;游錦雲;楊志堅;鄭中平zh_TW
dc.contributor.oralexamcommitteeCherng Ding;Chun-Ting Lee;Cheng-Hsien Li;Chin-Yun Yu;Chih-Chien Yang;Chung-Ping Chengen
dc.subject.keyword結構方程模型,共變結構分析,相關結構分析,非常態資料,漸進自由分配估計方法,zh_TW
dc.subject.keywordstructural equation modeling,covariance structure analysis,correlation structure analysis,nonnormal data,asymptotically distribution-free estimation method,en
dc.relation.page206-
dc.identifier.doi10.6342/NTU202502920-
dc.rights.note未授權-
dc.date.accepted2025-08-02-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
dc.date.embargo-liftN/A-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved