請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏瑞泓 | zh_TW |
| dc.contributor.advisor | Jui-Hung Yen | en |
| dc.contributor.author | 李品萱 | zh_TW |
| dc.contributor.author | Pin-Syuan Lee | en |
| dc.date.accessioned | 2025-08-04T16:07:48Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | 王一雄。2004。農藥污染對作物的影響。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 3: 73-96。
王皓平。2016。用草莓害物管理之農藥殘留對天敵昆蟲 (基徵草蛉與黃斑粗喙椿象)之影響。碩士論文。臺北:臺灣大學植物醫學碩士學位學程。 行政院農業部動植物防疫檢疫署。2023a。免登記植物保護資材申請程序及審核原則。檢自: https://pesticide.aphia.gov.tw/information/Data/ProtectnewsContent/3166. 行政院農業部動植物防疫檢疫署。2023b。已登錄之免登記植物保護資材產品單。檢自:https://pesticide.aphia.gov.tw/information/Data/ProtectnewsContent/1522. 行政院農業部動植物防疫檢疫署。2024。生物防治天敵補助品項名單。檢自:https://www.aphia.gov.tw/ws.php?id=22065. 吳子淦。1992。以基徵草蛉防治柑橘葉螨之可行性探討。中華昆蟲 12:81-89。 吳子淦。1995。以基徵草蛉及選擇殺螨劑綜合防治柑橘潛葉蛾、柑橘葉螨及柑橘鏽螨。中華昆蟲 15: 113-123。 段淑人。2019。天敵在臺灣生物防治應用之發展及願景。有益昆蟲在友善農耕之應用研討會專輯 11-24。行政院農業委員會苗栗區農業改良場。 侯秉賦、賴榮茂。2013。捕食性天敵昆蟲飼養簡介。高雄區農技報導112: 3-15。行政院農業委員會高雄改良場。 陳俊雄、高瑞卿。2008。《台灣行道樹圖鑑》。貓頭鷹出版。144-145。 章加寶。2011。天敵在有機農業害蟲防治上的利用。農業生技產業季刊 28:41 47。 章加寶、黃勝泉。1995。釋放基徵草蛉防治草莓園葉螨之效益評估。植保會刊37: 41-58。 鄒慧娟、陳子偉、顏辰鳳、陳保良、李昆龍、洪裕堂、蔡馨儀。2024。化學農藥風險十年減半行動方案。農業部動植物防疫檢疫署。 羅幹成。1997。捕食性天敵在臺灣的利用與展望。中華昆蟲 10: 57-64。 謝再添、黃琦雅。2014。基徵草蛉室內人工培養之標準操作流程。藥毒所專題報導112: 1-10。行政院農業委員會農業藥物試驗所。 Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18:265–267. Abdallah, M. S., Muhammad, I., & Warodi, F. A. 2017. Review on some plants as bio–pesticides. International Journal of Contemporary Research and Review, 8(7), 20186-20191. Ahmad, M., Ossiewatsch, H. R., & Basedow, T. 2003. Effects of neem‐treated aphids as food/hosts on their predators and parasitoids. Journal of Applied Entomology, 127(8), 458-464. Ahmed El-Sabrout, Hossam El-Din Zahran and Samir Abdelgaleil, 2018. Effects of Essential Oils on Growth, Feeding and Food Utilization of Spodoptera littoralis Larvae. Journal of Entomology, 15: 36-46. Al-Rubae, A. Y. 2009. The potential uses of Melia azedarach L. as pesticidal and medicinal plant, review. American-Eurasian Journal of Sustainable Agriculture, 3(2), 185-194. Amarasekare KG, Shearer PW. 2013. Comparing effects of insecticides on two green lacewings species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Economic Entomology 106(3): 1126-1133. Ashwini, M., Mohan, M., Sivakumar, G., & Venkatesan, T. 2021. Enhanced insecticide-resistance spectrum in green lacewing predator, Chrysoperla zastrowi sillemi (strain PTS-8) and its potential role in the management of sucking pests of cotton. Current Science, 120(2), 423-428. Baker, B. P., & Grant, J. A. 2018. Cinnamon & cinnamon oil profile. New York State Integrated Pest Management (IPM Program), Cornell University Library, Geneva NY, pp. 2-16. Beatriz Dáder, Antonio Jesús Magaña, María Jesús Pascual-Villalobos, Aránzazu Moreno, Alberto Fereres, Elisa Viñuela. 2024. Compatibility of Chrysoperla carnea (Neuroptera: Chrysopidae) with nanoformulations of natural active substances, Journal of Economic Entomology, 117(6), 2450–2460. Bernardes MFF, Pazin M, Pereira LC, Dorta DJ. 2015. Impact of pesticides on environmental and human health. Toxicology Studies—Cells, Drugs and Environment; IntechOpen: 195-233. Bhargava, M. C., & Meena, B. L. 2001. Effect of some spice oils on the eggs of Corcyra cephalonica Stainton. Insect Environment, 7 (1): 43-44. Brahmachari, G. 2004. Neem–an omnipotent plant: a retrospection. Chembiochem 5, 408–421. Brian AK, Ted EC. 2007. Oviposition Response of Green Lacewings (Neuroptera: Chrysopidae) to Aphids (Hemiptera: Aphididae) and Potential Attractants on Pecan. Environmental Entomology 36 (3): 577-583. Brunherotto, R., & Vendramim, J. D. 2001. Bioatividade de extratos aquosos de Melia azedarach L. sobre o desenvolvimento de Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) em tomateiro. Neotropical Entomology, 30, 455-460. Caballero-Gallardo, K., Scudeler, E. L., Carvalho dos Santos, D., Stashenko, E. E., & Olivero-Verbel, J. 2023. Deleterious Effects of Cymbopogon nardus (L.) Essential Oil on Life Cycle and Midgut of the Natural Predator Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Insects, 14(4), 367. Caccia, S., Casartelli, M., & Tettamanti, G. 2019. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell and Tissue research, 377, 505-525. Calvert, J.G., Atkinson,R. J., Kerr A., Madronich,S., Moortgart,G.K., Wallington,T.J., Yarwood, G. 2000. The mechanisms of atmospheric oxidation of the alkenes. Oxford University Press, New York. Campbell, B. E., Pereira, R. M., Koehler, P. G., & Trdan, S. 2016. Complications with controlling insect eggs. Insecticides resistance, 83-96. Campolo, O., Malacrinò, A., Zappalà, L. 2014. Fumigant bioactivity of five Citrus essential oils against Tribolium confusum. Phytoparasitica 42, 223–233. Campos, E. V., De Oliveira, J. L., Pascoli, M., De Lima, R., & Fraceto, L. F. 2016. Neem oil and crop protection: from now to the future. Frontiers in plant science, 7, 1494. Chang, S. T., & Cheng, S. S. 2002. Antitermitic activity of leaf essential oils and components from Cinnamomum osmophleum. Journal of Agricultural and Food Chemistry, 50(6), 1389-1392. Carpinella, M. C., Defago, M. T., Valladares, G., & Palacios, S. M. 2003. Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. Journal of Agricultural and Food Chemistry, 51(2), 369-374. Carson R. 1962. Silent Spring. MA Houghton Mifflin. Castilhos RV, Grützmacher AD, Coats JR. 2018. Acute toxicity and sublethal effects of terpenoids and essential oils on the predator Chrysoperla externa (Neuroptera: Chrysopidae). Neotropical Entomology 47(2):311-317. Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Goiney CC, Conterato AJ, Bruns EA, Hsu YW, Li L, Dickinson PS. 2007.Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. Journal of Experimental Biology, 210(Pt 4):699-714. Cox, C. 2002. Pyrethrins/pyrethrum insecticide factsheet. Journal of Pesticide Reform 22, 14-20. Defagó, M. T., Mangeaud, A., Benesovsky, V., Trillo, C., Carpinella, C., Palacios, S., & Valladares, G. 2009. Melia azedarach extracts: a potential tool for insect pest management. Phytopharmacology & Therapeutic Values V. Studium Press LLC, Houston, Texas, USA, 17-33. De França, S. M., Breda, M. O., Barbosa, D. R., Araujo, A. M., Guedes, C. A., & Shields, V. D. C. 2017. The sublethal effects of insecticides in insects. Biological control of pest and vector insects, 10, 66461. Devoz, G. L., Dias, P. M., Loureio, E. D. S., Pessoa, L. G. A., & Sales, A. C. 2018. Melia azedarach: Influência na Capacidade Predatória de Chrysoperla externa. Cadernos de Agroecologia, 13(2), 1-9. Diaz, J. H. 2016. Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness & Environmental medicine, 27(1), 153-163. Don‐Pedro, K. N. 1996. Fumigant toxicity is the major route of insecticidal activity of citruspeel essential oils. Pesticide Science 46(1): 71-78. Eilenberg, J., Hajek, A., & Lomer, C. 2001. Suggestions for unifying the terminology in biological control. BioControl 46: 387-400. Ferron P. 1999. Protection intégrée des cultures: évolution du concept et de son application. Cahiers Agricultures 8:389–396. Fisher, K., and Phillips, C. 2008. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science and Technology 19 (3): 156-164. Fradin, M. S., & Day, J. F. 2002. Comparative efficacy of insect repellents against mosquito bites. New England Journal of Medicine, 347(1), 13-18. Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Kowalczewski, P., Bakay, L., & Kačániová, M. 2022. The potential use of Citrus aurantifolia L. essential oils for decay control, quality preservation of agricultural products, and anti-insect activity. Agronomy 12(3): 735. Ghada AAE, Naglaa YM. 2020. Efficacy of cinnamon oil and its active ingredient (cinnamaldehyde) on the cotton mealy bug Phenacoccus solenopsis Tinsley and the predator Chrysoperla carnea. Bulletin of the National Research Centre 44: 154. Glaucilane S. Cruz, Valéria Wanderley-Teixeira, José V. Oliveira, Carolline G. D’ assunção, Franklin M. Cunha, Álvaro A.C. Teixeira, Carolina A. Guedes, Kamilla A. Dutra, Douglas R.S. Barbosa, Mariana O. Breda. 2017. Effect of trans-anethole, limonene and your combination in nutritional components and their reflection on reproductive parameters and testicular apoptosis in Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemico-Biological Interactions 263,74-80. Gontijo PC, Moscardini VF, Michaud JP. 2014. Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. Journal of Pest Science 87: 711–719. Haddi, K., Faroni, L. R., & Oliveira, E. E. 2017. Cinnamon oil. In Green pesticides handbook (pp. 117-150). CRC Press. Hammad, E. A. F. 2008. Chinaberry, Melia azedarach L., A biopesticidal tree. In Encyclopedia of Entomology (pp. 850-857). Springer, Dordrecht. Hammad, E. A. F., Zournajian, H., & Talhouk, S. 2001. Efficacy of extracts of Melia azedarach L. callus, leaves and fruits against adults of the sweetpotato whitefly Bemisia tabaci (Hom., Aleyrodidae). Journal of Applied Entomology, 125(8), 483-488. Haubruge, E., Lognay, G., Marlier, M., Danhier, P., Gilson, J. C., & Gaspar, C. 1989. A study of the toxicity of five essential oils extracted from Citrus sp. to Sitophilus zeamais Motsch (Col., Curculionidae), Prostephanus truncatus (Horn)(Col., Bostrichidae) and Tribolium castaneum Herbst (Col., Tenebrionidae). Mededelingen van de Faculteit Landbouwwetenschappen - Rijksuniversiteit Gent 54(3B): 1083-1093. Hassan SA, Bigler F, Bogenschütz H. 1994. Results of the sixth joint pesticide testing programme of the IOBC/WPRS-working group «pesticides and beneficial organisms». Entomophaga 39: 107-119. Hayes TB, Hansen M, Kapuscinski AR, Locke KA, Barnosky A. 2017. From silent spring to silent night: Agrochemicals and the anthropocene. Elementa: Science of the Anthropocene 5: 1–24. Hokkanen, H. M. T., & Sailer, R. I. 1985. Success in classical biological control. Critical Reviews in Plant Sciences 3(1): 35-72. Hori, M. (2003). Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius)(Coleoptera: Anobiidae). Applied Entomology and Zoology, 38(4), 467-473. Huang, Y., & Ho, S.H. 1998. Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Journal of Stored Products Research 34 (1):11–17. Ismail, S. 2020. Sublethal effects of some essential oils on the developmental and reproduction of the Spodoptera littoralis (Boisduval). Progress in Chemical Biochemical Research, 3(4), 287-295. Isman, M. B. 1999. Neem and related natural products. Biopesticides: Use and delivery, 139-153. Jaqueline Scapinello, J. Vladimir Oliveira, Marcelo Lucas Ribeiros, Osmar Tomazelli, Luís Antonio Chiaradia, Jacir Dal Magro. 2014. Effects of supercritical CO2 extracts of Melia azedarach L. on the control of fall armyworm (Spodoptera frugiperda). The Journal of Supercritical Fluids,93: 20-26. Jeon Y, Lee S, Yang Y, Lee H. 2017. Insecticidal activities of their components derived from the essential oils of Cinnamomum sp. barks and against Ricania sp. (Homoptera: Ricaniidae), a newly recorded pest. Pest Management Science 73:2000–2004. Jerry C, Hans D. 2007. The benefits of pesticides to mankind and the environment. Crop Protection 26 (9): 1337-1348. Jing TX, Qi CC, Jiao A, Liu XQ, Zhang S, Su HH, Yang YZ. 2022. Life table construction under different temperatures and insecticide susceptibility analysis of Uroleucon formosanum (Hemiptera: Aphididae). Insects 13(8): 693. Joao Zotti M, Dionel GA, Heres LI, Smagghe G. 2013. Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): lethal, sublethal and dose-response effects. Insect Science. 20(6):743-752. Jovičić I. 2022. Uroleucon formosanum (Oriental lettuce aphid). CABI Compendium, CABI Compendium, 60675755. Jumbo, L. O. V., Faroni, L. R., Oliveira, E. E., Pimentel, M. A., & Silva, G. N. 2014. Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Industrial Crops and Products, 56, 27-34. Kaoutar, F., Najiba, B., Rabea, Z., Najib, G., & Hassan, B. 2019. Evaluation of the bio-insecticidal effects of three extracts on the larvae of the green lacewing Chrysoperla carnea (Stephen) under the laboratory conditions. Annual Research & Review in Biology, 33(3): 1-8. Article no.ARRB.51834 Khater HF, Ali AM, Abouelella GA, Marawan MA, Govindarajan M, Murugan K, Abbas RZ, Vaz NP, Benelli G. 2018. Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, Lucilia sericata. International Journal of Dermatology, 57(4):449-457. Kogan M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annual review of entomology 43(1): 243-270. Kumar, R., Singh, R., Meera, P. S., & Kalidhar, S. B. 2003. Chemical components and insecticidal properties of Bakain (Melia azedarach L.)–A review. Agricultural Reviews, 24(2), 101-115. Lee, E. J., Kim, J. R., Choi, D. R., & Ahn, Y. J. 2008. Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Economic Entomology, 101(6), 1960-1966. Lee, S. & Tsao, R. & Peterson, C. J. & Coats, J. R. 1997. Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), twospotted spider mite (Acari: Tetranychidae), and house fly (Diptera: Muscidae). Journal of Economic Entomology. 90. 883-92. Lee, S., Peterson, C. J., & Coats, J. R. 2003. Fumigation toxicity of monoterpenoids to several stored product insects. Journal of Stored Products Research, 39(1), 77-85. Lester EE. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest management science 62(9): 787-789. Li, Z., Huang, R., Li, W., Cheng, D., Mao, R., & Zhang, Z. 2017. Addition of cinnamon oil improves toxicity of rotenone to Spodoptera litura (Lepidoptera: Noctuidae) larvae. Florida Entomologist, 100(3), 515-521. López MD, Pascual-Villalobos MJ. 2015. Are monoterpenoids and phenylpropanoids efficient inhibitors of acetylcholinesterase from stored product insect strains? Flavour and Fragrance Journal 30:108–112. Lowery, D. T., Isman, M. B., & Brard, N. L. 1993. Laboratory and field evaluation of neem for the control of aphids (Homoptera: Aphididae). Journal of Economic Entomology, 86(3), 864-870. Lu, L., Shu, C., Chen, L., Yang, Y., Ma, S., Zhu, K., & Shi, B. 2020. Insecticidal activity and mechanism of cinnamaldehyde in C. elegans. Fitoterapia, 146, 104687. Lv X, Liu C, Li Y, Gao Y, Wang H, Li J, Guo B. 2014. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae. Ecotoxicology and environmental safety 107: 71-76. Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E., & Cho, M. H. 2017. Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition 59(4): 611–625. Mbata GN, Phillips TW, Payton M. 2004. Mortality of eggs of stored-product insects held under vacuum: effects of pressure, temperature, and exposure time. Journal of Economic Entomology. 97(2):695-702. McDonald, L. L., Guy, R. H., & Speirs, R. D. 1970. Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects (No. 882). Agricultural Research Service, United States Department of Agriculture. McKenna MM, Hammad EM, Farran MT. 2013. Effect of Melia azedarach (Sapindales: Meliaceae) fruit extracts on Citrus Leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Springerplus. 2(1):144. Miller RH, Odechiil O, Foottit RG, Pike KS. 2003. Uroleucon formosanum (Homoptera: Aphididae) found on Youngia japonica on Guam and Rota in the Mariana Islands. Proceedings of the Hawaiian entomological Society 36:125-127. Melanie KW, Marlon AWS, Andrew RW. 2007. Indirect non-target effects of insecticides on Tasmanian brown lacewing (Micromus tasmaniae) from feeding on lettuce aphid (Nasonovia ribisnigri). Biological Control 43: 31-40. Mohamad, F., Mansour, M., & Ramadan, A. 2015. Effects of biological and environmental factors on sex ratio in Ascogaster quadridentata Wesmael (Hymenoptera: Braconidae), a parasitoid of Cydia pomonella L.(Torticidae). Journal of Plant Protection Research, 55(2):151-155. Mordue, A.J., A.J. Nisbet, M. Nasiruddin & E. Walker. 1996. Differential thresholds of azadirachtin for feeding deterrence and toxicity in locusts and an aphid. Entomologia Experimentalis et Applicata, 80: 69-72. Nasreen, Abida & Ashfaq, Muhammad & Mustafa, Ghulam & Khan, Rashad. 2007. Mortality rates of five commercial insecticides on Chrysoperla carnea (Stephens) (Chrysopidae: Neuroptera). Pakistan Journal of Agricultural Sciences, 44(2), 266-271. Navarra, M., Mannucci, C., Delbò, M., & Calapai, G. 2015. Citrus bergamia essential oil: from basic research to clinical application. Frontiers in pharmacology, 6, 36. Nerio, L. S., Olivero-Verbel, J., & Stashenko, E. 2010. Repellent activity of essential oils: a review. Bioresource technology, 101(1), 372-378. Nooshin Razavi , Kamal Ahmadi. 2018. Effect of four ethanolic plant extracts on hatching time of Orius horvathi (Reuter) (Heteroptera: Anthocoridae). Pflanzenschutz in den Tropen und Subtropen, p.495. Oyedeji, A. O., Okunowo, W. O., Osuntoki, A. A., Olabode, T. B., & Ayo-Folorunso, F. 2020. Insecticidal and biochemical activity of essential oil from Citrus sinensis peel and constituents on Callosobrunchus maculatus and Sitophilus zeamais. Pesticide Biochemistry and Physiology, 168, 104643. Park IK, Lee HS, Lee SG, Park JD, Ahn YJ. 2000. Insecticidal and fumigant activities of Cinnamomum cassia bark-derived materials against Mechoris ursulus (Coleoptera: attelabidae). Journal of Agricultural and Food Chemistry 48(6):2528-31. Passino, G. S., Bazzoni, E., Moretti, L., & Prota, R. 1999. Effects of essential oil formulations on Ceratitis capitata Wied.(Dipt., Tephritidae) adult flies. Journal of applied entomology, 123(3), 145-149. Pereira, V. V., Kumar, D., Agiwal, M., & Prasad, T. G. 2019. Stability of azadirachtin: a tetranortriterpenoid from neem tree. International Journal of Chemical Studies, 7, 412-419. Pike KS, Foottit RG, Miller RH, Idechiil O, Allison DW. 2005. Uroleucon formosanum (Takahashi) and Uroleucon sonchellum (Monell) (Hemiptera, Aphididae): morphological comparison and diagnosis. Proceedings of the Hawaiian entomological Society 37: 49–63. Raja, N., Albert, S., Ignacimuthu, S. E., & Dorn, S. 2001. Effect of plant volatile oils in protecting stored cowpea Vigna unguiculata (L.) Walpers against Callosobruchus maculatus (F.)(Coleoptera: Bruchidae) infestation. Journal of stored products Research, 37(2), 127-132. Ray, D. E., & Fry, J. R. 2006. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacology & therapeutics, 111(1), 174-193. Regnault-Roger, C., Vincent, C., & Arnason, J. T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual review of entomology, 57(1): 405-424. Ricardo Alcántara-de la Cruz, Douglas Silva Parreira, Francisco Andreas Rodríguez Dimaté, Lorena Duarte Batista, Rafael Coelho Ribeiro, José Cola Zanuncio. 2021. Effects of essential oils on biological attributes of Trichogramma galloi adults. Journal of Asia-Pacific Entomology,24(2):64-67. Royal Society of Chemistry. 2014. “Chemspider.” 2014. http://www.chemspider.com/. Rumpf, S., Frampton, C., & Dietrich, D. R. 1998. Effects of conventional insecticides and insect growth regulators on fecundity and other life-table parameters of Micromus tasmaniae (Neuroptera: Hemerobiidae). Journal of Economic Entomology, 91(1), 34-40. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chemistry 91: 621–632. Saeidi, M., Sefidkon, F., & Moharramipour, S. 2014. Chemical composition and fumigant toxicity of three citrus essential oils against eggs, larvae and adults of Callosobruchus maculatus (Col.: Bruchidae). Journal of Entomological Society of Iran, 34(3), 17-25. Saraç, A., Erler, F., & Tunç, İ. 2004. The assessment of toxicity of the Melia azedarach seed oil against stored product insects. Integrated Protection of Stored Products IOBC Bulletin/wprs, 27, 145-149. Sarkar SC, Wang E, Zhang Z. 2019 et al. Laboratory and glasshouse evaluation of the green lacewing, Chrysopa pallens (Neuroptera: Chrysopidae) against the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Applied Entomoloy and Zoology 54: 115–121. Simon H & Martin L. 2000. The irritant and repellent effects of organophosphates on the Tasmanian lacewing, Micromus tasmaniae (Neuroptera: Hemerobiidae). Pest Management Science 56: 916-920. Smith R. & Smith G. 1949. Supervised control of insects: Utilizes parasites and predators and makes chemical control more efficient. California Agriculture 3(5): 3-12. Stanley J & Preetha G. 2016. Pesticide toxicity to arthropod predators: exposure, toxicity and risk assessment methodologies. Pesticide Toxicity to Non-target Organisms. Springer Science. Stapel JO, Cortesero AM, Lewis WJ. 2000. Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biological Control 17 (3): 243-249. Sterk G., Hassan SA., Baillod M., Bakker F., Bigler F., Bl¨ umel S., Bogensch¨ utz H., Boller E., Bromand B., Brun J., Calis JNM., Coremans-Pelseneer J., Duso C., Garrido A., Grove A., Heimbach U., Hokkanen H., Jacas J., Lewis G., Moreth L., Polgar L., Roversti L., Samsoe-Petersen L., Sauphanor B., Schaub L., Sta¨ ubli A., Tuset JJ., Vainio A., vandeVeire M.,Viggiani G.,Vi˜nuela E.&Vogt H. 1999. Results of the seventh joint pesticide testing programme car ried out by the IOBC/WPRS Working Group “Pesticides and Beneficial Organisms”. BioControl 44: 99-117. Surendra KD. 2019. The new integrated pest management paradigm for the modern age. Journal of Integrated Pest Management 10(1): 1-9. Tang, Y. Q., Weathersbee, A. A., & Mayer, R. T. 2002. Effect of neem seed extract on the brown citrus aphid (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae). Environmental Entomology, 31(1), 172-176. Trivedi, A., Nayak, N., & Kumar, J. 2017. Fumigant toxicity study of different essential oils against stored grain pest Callosobruchus chinensis. Journal of Pharmacognosy and Phytochemistry, 6(4), 1708-1711. Tudi M, Daniel RH, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. 2021. Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health 18(3): 1112. Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A. 2022. Exposure routes and health risks associated with pesticide application. Toxics 10(6): 335. Tzeng, C. C., & Kao, S. S. 1996. Evaluation on the safety of pesticides to green lacewing, Mallada basalis larvae. Plant Protection Bulletin., 38, pp. 203-213. United States Environmental Protection Agency. 1994. Prevention, Pesticides And Toxic Substances –Limonene. EPA-738-F-94-030. Valladares, G., Defago, M. T., Palacios, S., & Carpinella, M. C. 1997. Laboratory evaluation of Melia azedarach (Meliaceae) extracts against the elm leaf beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 90(3), 747-750. Van N. N., Dang M. C. N., Seo DongJun., Park R., & Jung WooJin. 2009. Antimycotic activities of Cinnamon-derived compounds against Rhizoctonia solani in vitro. Biocontrol, 54(5), 697–707. Verma, S., Sagar, D., Kumar, H., & Sujatha, G. S. 2024. Abiotic factors as game changer in sex ratio distortion of insects. International Journal of Environment and Climate Change, 14(7), 332-342. Vijayan, K. K., & Thampuran, R. A. 2004. Pharmacology and Toxicology of Cinnamon and Cassia. Cinnamon and Cassia, 259. Viteri Jumbo LO, Haddi K, Faroni LRD, Heleno FF, Pinto FG, Oliveira EE. 2018. Toxicity to oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE 13(11): e0207618. Wang, L., Zhang, Y., Fan, G., Ren, J. N., Zhang, L. L., & Pan, S. Y. 2019. Effects of orange essential oil on intestinal microflora in mice. Journal of the Science of Food and Agriculture 99 (8): 4019-4028. Wang, Y., Zhao, R., Yu, L., Zhang, Y., He, Y., & Yao, J. 2014. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia). Journal of the Science of Food and Agriculture, 94(5), 1000-1004. Werdin González JO, Gutiérrez MM, Murray AP, Ferrero AA. 2011. Composition and biological activity of essential oils from Labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Management Science 67(8): 948-955. William R. Hare. 2004. Meliatoxins. Clinical Veterinary Toxicology, Chapter 25 - Plants, p415-416. Xu Wang, María-Aránzazu Martínez, Menghong Dai, Dongmei Chen, Irma Ares, Alejandro Romero, Victor Castellano, Marta Martínez, José Luis Rodríguez, María-Rosa Martínez-Larrañaga, Arturo Anadón, Zonghui Yuan. 2016. Permethrin-induced oxidative stress and toxicity and metabolism. Environmental Research 149: 86-104. Yang, Y., Isman, M. B., & Tak, J.-H. 2020. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia Bark essential oil against Sitophilus zeamais Motschulsky. Insects, 11(8), 474. Yang, Y. C., Lee, E. H., Lee, H. S., Lee, D. K., & Ahn, Y. J. 2004. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. Journal of the American mosquito control association, 20(2), 146-149. Yursida, Y., Andrew, F., Agustina, K., Kalsum, U., Ikhwani, I., Rahayuningsih, S. & Putra, N. R. 2025. Harnessing the power of cinnamon oil: A review of its potential as natural biopesticide and its implications for food security. Heliyon 11(2), e41827. Zadeh NA, Ahmadi K. 2018. The impact of several plant extracts and essential oils on Pistachio psylla (Agonoscena pistaciae) and its natural enemy, Chrysoperla carnea. Journal of Nuts 9: 159-168. Zandi-Sohani N, Rajabpour A, Yarahmadi F, Ramezani L. 2018. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) and the generalist predator Orius albidipennis (Hemiptera: Anthocoridae) to vapors of essential oils. Journal of Entomological Science 53(4): 493-502. Zhang Y, Zhang L, Zheng J, Li T, Zhao L. 2025. Effects of larval starvation stress on the life history and adult fitness of fall webworm, Hyphantria Cunea. Insects. 14;16(4):410. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98351 | - |
| dc.description.abstract | 農藥是病蟲害防治中的一大利器,但僅有少部分抵達作用位置,其餘的會留存於環境中;免登記植物保護資材相對於農藥毒性較低且於環境中殘留性較小,但仍不可忽視其對於非目標生物的影響。因此本研究評估三種免登記植物保護資材—柑橘精油、肉桂精油與苦楝油對商品化天敵昆蟲基徵草蛉 (Mallada basalis) 的急毒性、行為反應與生理影響,模擬其在田間透過體表接觸、呼吸揮發物及攝食三種可能接觸途徑,觀察並記錄各資材於不同途徑下造成的死亡率。體表接觸試驗顯示,苦楝油對基徵草蛉一齡幼蟲具最高毒性,其次為肉桂精油與柑橘精油,但三者均屬於國際生物防治組織 (IOBC) 毒性分級中的「無毒害」等級。揮發物呼吸試驗亦顯示類似趨勢,苦楝油死亡率最高,柑橘精油最低,三者對基徵草蛉卵孵化率無影響。在捕食毒性試驗中,肉桂精油顯著降低基徵草蛉對蚜蟲的捕食行為並提升死亡率,屬於「低毒性」等級,其餘兩資材則無顯著負面影響。忌避行為方面,肉桂精油與苦楝油於試驗初期引發短暫低忌避性,但在1~4小時內因揮發與分解作用導致忌避性消失。多次暴露試驗結果指出,肉桂精油會減少幼蟲體重增加幅度,而苦楝油則顯著降低總存活率,惟三種資材對幼蟲發育天數與雌性比皆無顯著影響。綜合而言,柑橘精油在各項試驗中皆未對基徵草蛉造成顯著不良影響,為較安全之資材。相對地,肉桂精油與苦楝油雖毒性較低,仍可能於某些條件下對基徵草蛉生理與行為產生影響,因此在實際應用於IPM (整合性病蟲害管理) 策略時,應謹慎考量使用濃度與施藥時機,以兼顧作物防治與天敵施用效益。 | zh_TW |
| dc.description.abstract | Pesticides are powerful tools in pest management, yet only a small proportion reaches the target site, while the remainder may persist in the environment. Compared to conventional pesticides, plant protection materials exempted from registration typically exhibit lower toxicity and reduced environmental persistence. However, their potential impacts on non-target organisms should not be overlooked. This study evaluated the acute toxicity, behavioral responses, and physiological effects of three such materials—citrus essential oil, cinnamon essential oil, and neem oil—on the commercially available predatory insect Mallada basalis (Neuroptera: Chrysopidae). Three potential exposure routes were simulated: direct contact via cuticle, inhalation of volatiles, and ingestion through predation. Mortality rates under each route were recorded accordingly. In contact toxicity assays, neem oil caused the highest mortality in first-instar larvae, followed by cinnamon and citrus oils. Nonetheless, all three were classified as “harmless” under IOBC toxicity categories. A similar trend was observed in inhalation exposure assays, where neem oil again resulted in the highest larval mortality, and citrus oil the lowest, with no significant effect on egg hatchability. In predation toxicity assays, cinnamon oil significantly reduced aphid consumption and increased larval mortality, placing it in the “slightly harmful” category, while the other two oils showed no notable adverse effects. In repellency assays, cinnamon and neem oils exhibited low-level repellency within the first 30 minutes, but the effect diminished within 1–4 hours due to volatility and oxidative degradation. Under repeated exposure, cinnamon oil was found to reduce larval weight gain, whereas neem oil significantly decreased total viability. However, none of the three oils significantly affected larval development duration or adult female ratio. In conclusion, citrus essential oil exhibited no significant negative effects across all test parameters, indicating it is relatively safe for M. basalis. By contrast, although cinnamon and neem oils showed low toxicity overall, they may still influence the physiology and behavior of M. basalis under certain conditions. Therefore, when incorporating these materials into integrated pest management (IPM) strategies, it is essential to carefully consider their application concentrations and timing to balance pest control efficacy with natural enemies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:07:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:07:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目次 IV 圖次 VII 表次 VIII 壹、前言 1 (一) 農藥的使用 1 (二) 非目標節肢動物的農藥接觸途徑 2 (三) 整合性病蟲害管理 5 (四) 免登記植物保護資材與天敵 7 (五) 試驗生物之介紹 10 1. 基徵草蛉 (Mallada basalis) 10 2. 白尾火紅蚜 (Uroleucon formosanum) 11 (六) 試驗藥劑介紹 14 1. 柑橘精油 (citrus essential oil) 14 2. 肉桂精油 (cinnamon essential oil) 15 3. 苦楝油 (neem oil of Melia azedarach L.) 16 貳、研究目的 21 參、試驗架構 22 肆、材料與方法 23 (一) 試驗生物馴養 23 1. 基徵草蛉 (Mallada basalis) 23 2. 白尾火紅蚜 (Uroleucon formosanum) 23 (二) 藥品與器材 24 (三) 體表接觸毒性試驗 26 (四) 呼吸毒性試驗 27 1. 基徵草蛉卵 27 2. 一齡草蛉幼蟲 27 (五) 捕食毒性試驗 28 (六) 忌避性試驗 29 1. 30 分鐘內的忌避情形 29 2. 4小時內的忌避情形 29 (七) 長時間多次暴露試驗 30 (八) 統計分析 31 伍、結果與討論 33 (一) 體表接觸毒性試驗 33 (二) 呼吸毒性試驗 38 1. 基徵草蛉卵 38 2. 一齡草蛉幼蟲 39 (三) 捕食毒性試驗 42 (四) 忌避性試驗 48 (五) 長時間多次暴露試驗 54 1. 生長比 54 2. 發育時間 54 3. 總存活率 55 4. 成蟲的雌性比 56 陸、結論 60 柒、參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生物防治 | zh_TW |
| dc.subject | 免登記植物保護資材 | zh_TW |
| dc.subject | 基徵草蛉 | zh_TW |
| dc.subject | 天敵 | zh_TW |
| dc.subject | 毒性 | zh_TW |
| dc.subject | toxicity | en |
| dc.subject | biological control | en |
| dc.subject | plant protection materials exempted from registration | en |
| dc.subject | Mallada basalis | en |
| dc.subject | natural enemy | en |
| dc.title | 施用免登記植物保護資材對基徵草蛉 (Mallada basalis) 之風險與綜合應用研究 | zh_TW |
| dc.title | Risks of applying plant protection materials exempted from registration to lacewings (Mallada basalis) and the comprehensive application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭旭峰;洪傳揚;陳玟瑾;林素禎 | zh_TW |
| dc.contributor.oralexamcommittee | Shiuh-Feng Shiao;Chwan-Yang Hong;Wen-Ching Chen;Suh-Jen Lin | en |
| dc.subject.keyword | 生物防治,免登記植物保護資材,基徵草蛉,天敵,毒性, | zh_TW |
| dc.subject.keyword | biological control,plant protection materials exempted from registration,Mallada basalis,natural enemy,toxicity, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202501382 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2025-08-05 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
