Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宜廷zh_TW
dc.contributor.advisorYi-Ting Chenen
dc.contributor.author蔡秉叡zh_TW
dc.contributor.authorPing-Jui Tsaien
dc.date.accessioned2025-08-04T16:07:21Z-
dc.date.available2025-08-05-
dc.date.copyright2025-08-04-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citationAl-Thaqeb, S. A. and Algharabali, B. G. (2019). Economic policy uncertainty: A literature review. The Journal of Economic Asymmetries, 20:e00133.
Albulescu, C. T. (2021). COVID-19 and the united states financial markets'volatility. Finance Research Letters, 38:101699.
Asgharian, H., Hou, A. J., and Javed, F. (2013). The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach. Journal of Forecasting, 32(7):600–612.
Baker, S. R., Bloom, N., and Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4):1593–1636.
Baker, S. R., Bloom, N., Davis, S. J., and Kost, K. J. (2019). Policy news and stock market volatility. Working Paper 25720, National Bureau of Economic Research.
Baker, S. R., Bloom, N., Davis, S. J., Kost, K. J., Sammon, M. C., and Viratyosin, T. (2020). The unprecedented stock market impact of COVID-19. Working Paper 26945, National Bureau of Economic Research.
Caldara, D. and Iacoviello, M. (2022). Measuring geopolitical risk. American Economic Review, 112(4):1194– 1225.
Conrad, C. and Kleen, O. (2020). Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. Journal of Applied Econometrics, 35(1):19–45.
Conrad, C. and Loch, K. (2015). Anticipating long-term stock market volatility. Journal of Applied Econometrics, 30(7):1090–1114.
Engle, R. F., Ghysels, E., and Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. The Review of Economics and Statistics, 95(3):776–797.
Eniayewu, P. E., Samuel, G. T., Joshua, J. D., Samuel, B. T., Dogo, B. S., Yusuf, U., Ihekuna, R. O., and Mevweroso, C. R. (2024). Forecasting exchange rate volatility with monetary fundamentals: A GARCH-MIDAS approach. Scientific African, 23:e02101.
Fan, Y. and Tang, C. Y. (2012). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society Series B: Statistical Methodology,75(3):531–552.
Fang, L., Chen, B., Yu, H., and Qian, Y. (2018). The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH-MIDAS approach. Journal of Futures Markets, 38(3):413–422.
Fang, T., Lee, T.-H., and Su, Z. (2020). Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection. Journal of Empirical Finance, 58:36–49.
Ghysels, E., Sinko, A., and, R. V. (2007). Midas regressions: Further results and new directions. Econometric Reviews, 26(1):53–90.
Gulen, H. and Ion, M. (2015). Policy uncertainty and corporate investment. The Review of Financial Studies, 29(3):523–564.
Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 35(3):705–730.
Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set. Econometrica, 79(2):453–497.
Jiang, C., Li, Y., Xu, Q., and Liu, Y. (2021). Measuring risk spillovers from multiple developed stock markets to china: A vine-copula-GARCH-MIDAS model. International Review of Economics Finance, 75:386–398.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 2(4):73–84.
Liu, R., Zhou, Z., and Li, H. (2022). The influence of COVID-19 epidemic on bdi volatility: An evidence from GARCH-MIDAS model. Ocean & Coastal Management, 229:106330.
Lu, H., Gao, Q., Xiao, L., and Dhesi, G. (2024). Forecasting EUA futures volatility with geopolitical risk: Evidence from GARCH-MIDAS models. Review of Managerial Science, 18:1917–1943.
Patton, A. J. (2011). Journal of Econometrics, 160(1):246–256. Volatility forecast comparison using imperfect volatility proxies.
Raza, S. A., Masood, A., Benkraiem, R., and Urom, C. (2023). Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach. Energy Economics, 120:106591.
Rogers, L. C. G. and Satchell, S. E. (1991). Estimating variance from high, low and closing prices. The Annals of Applied Probability, 1(4):504–512.
Salisu, A. A., Ogbonna, A. E., Gupta, R., and Ji, Q. (2024). Energy market uncertainties and exchange rate volatility: A GARCH-MIDAS approach. Finance Research Letters, 67:105847.
Schwert, G. W. (1989). Why does stock market volatility change over time? The Journal of Finance, 44(5):1115–1153.
Segnon, M., Gupta, R., and Wilfling, B. (2024). Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks. International Journal of Forecasting, 40(1):29–43.
Yang, D. and Zhang, Q. (2000). Drift‐independent volatility estimation based on high, low, open, and close prices. The Journal of Business, 73(3):477–492.
Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98349-
dc.description.abstract本文應用 Fang et al. (2020, Journal of Empirical Finance) 所提出結合懲罰項之自我迴歸條件異質變異數-混合頻率模型 (GARCH-MIDAS),進行股票與債券市場報酬率之波動度與涉險值(VaR)的日頻率預測。在實證過程中考慮了多個月頻率的預測變數;此外,也加入傳染病風險變數做為新的解釋變數。實證結果表示所考慮的實證設定在股票市場波動度與涉險值預測均具有相對的優勢;另外,就債券市場的波動度與涉險值預測而言,雖整體的預測能力下降,但本文的實證設定尚能展現一定的預測能力。zh_TW
dc.description.abstractThis thesis applies the generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) with penalized framework proposed by Fang et al. (2020, Journal of Empirical Finance) to generate daily forecasts of volatility and Value at Risk (VaR) for stock and bond index returns. Beyond daily returns, we incorporate several monthly macroeconomic and financial predictors, and we further augment the model with indicators that capture infectious disease risk. Empirically, our specification outperforms both the traditional GJR-GARCH model and the quarterly-frequency GARCH-MIDAS framework. While its overall predictive power declines for bond index returns, the proposed specification still delivers a meaningful level of accuracy in that market.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:07:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-04T16:07:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Econometric Method 5
2.1 Model 5
2.2 Estimation Procedure 7
2.3 Forecasting 9
2.3.1 Volatility Forecast 9
2.3.2 Value-at-Risk Forecast 10
Chapter 3 Empirical Setting 12
3.1 Financial Variables 13
3.2 Macroeconomic Variables 14
3.3 Volatility Variables 15
Chapter 4 Empirical Findings 19
4.1 In-sample Estimation 19
4.2 Out-of-sample Forecast 25
4.2.1 Volatility Forecast 25
4.2.2 Value-at-Risk Forecast 34
Chapter 5 Conclusion 39
References 41
-
dc.language.isoen-
dc.subject波動度預測zh_TW
dc.subject結合懲罰項之混合頻率-自我迴歸條件異質變異數模型zh_TW
dc.subject涉險值預測zh_TW
dc.subjectValue at Risk forecasten
dc.subjectGARCH-MIDAS with penlized frameworken
dc.subjectVolatility forecasten
dc.titleGARCH-MIDAS 對波動性與涉險值預測的應用zh_TW
dc.titleAn Empirical Application of GARCH-MIDAS for Volatility and Value-at-Risk Forecastsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪志清;楊睿中zh_TW
dc.contributor.oralexamcommitteeChih-Ching Hung;Jui-Chung Yangen
dc.subject.keyword結合懲罰項之混合頻率-自我迴歸條件異質變異數模型,波動度預測,涉險值預測,zh_TW
dc.subject.keywordGARCH-MIDAS with penlized framework,Volatility forecast,Value at Risk forecast,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202502186-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
dc.date.embargo-lift2025-08-05-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf820.19 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved