請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98345完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 吳立芹 | zh_TW |
| dc.contributor.author | Li-Chin Wu | en |
| dc.date.accessioned | 2025-08-04T16:06:23Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | Arene, E. O., & Kitwood, T. M. (1979). An introduction to the chemistry of carbon compounds. Longman. https://doi.org/https://cir.nii.ac.jp/crid/1130282272828932992
Barkhordari, M. S., Zhou, N., Li, K., & Qi, C. (2024). Interpretable machine learning for predicting heavy metal removal efficiency in electrokinetic soil remediation. Journal of Environmental Chemical Engineering, 12(6), 114330. https://doi.org/https://doi.org/10.1016/j.jece.2024.114330 Barnes David, L., Cosden, E., Johnson, B., Johnson, K., Stjärnström, S., Johansson, K., & Filler, D. (2012). Operation of Soil Vapor Extraction in Cold Climates. In Cold Regions Engineering (pp. 956-967). https://doi.org/doi:10.1061/40621(254)83 10.1061/40621(254)83 Baştanlar, Y., & Özuysal, M. (2014). Introduction to Machine Learning. In M. Yousef & J. Allmer (Eds.), miRNomics: MicroRNA Biology and Computational Analysis (pp. 105-128). Humana Press. https://doi.org/10.1007/978-1-62703-748-8_7 Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. https://doi.org/10.1109/TPAMI.2013.50 Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? The Journal of Arthroplasty, 33(8), 2358-2361. https://doi.org/https://doi.org/10.1016/j.arth.2018.02.067 Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245-271. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00063-5 Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79. https://doi.org/https://doi.org/10.1016/j.neucom.2017.11.077 Cao, H., Xin, Y., & Yuan, Q. (2016). Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource technology, 202, 158-164. https://doi.org/https://doi.org/10.1016/j.biortech.2015.12.024 Carter, M. R., Gregorich, E. G., Anderson, D. W., Doran, J. W., Janzen, H. H., & Pierce, F. J. (1997). Chapter 1 Concepts of soil quality and their significance. In E. G. Gregorich & M. R. Carter (Eds.), Developments in Soil Science (Vol. 25, pp. 1-19). Elsevier. https://doi.org/https://doi.org/10.1016/S0166-2481(97)80028-1 Chen, H., Cao, Y., Qin, W., Lin, K., Yang, Y., Liu, C., & Ji, H. (2024). Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons. Science of the total environment, 927, 172173. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172173 Chiang, L. H., Braun, B., Wang, Z., & Castillo, I. (2022). Towards artificial intelligence at scale in the chemical industry. AIChE Journal, 68(6), e17644. https://doi.org/https://doi.org/10.1002/aic.17644 Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2021.102383 Ding, Y., Zhang, Y., Deng, Z., Song, H., Wang, J., & Guo, H. (2022). An innovative method for soil vapor extraction to improve extraction and tail gas treatment efficiency. Scientific Reports, 12(1), 6495. https://doi.org/10.1038/s41598-022-08734-8 El Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? In I. El Naqa, R. Li, & M. J. Murphy (Eds.), Machine Learning in Radiation Oncology: Theory and Applications (pp. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1 Eneh, O. C. (2011). A review on petroleum: Source, uses, processing, products and the environment. Journal of applied sciences, 11(12), 2084-2091. https://doi.org/10.3923/jas.2011.2084.2091 Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182. Hassanizadeh, M., & Gray, W. G. (1979). General conservation equations for multi-phase systems: 1. Averaging procedure. Advances in Water Resources, 2, 131-144. https://doi.org/https://doi.org/10.1016/0309-1708(79)90025-3 Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69-76. https://doi.org/10.1007/s12178-020-09600-8 Jamal, S., Goyal, S., Grover, A., & Shanker, A. (2018). Machine Learning: What, Why, and How? In A. Shanker (Ed.), Bioinformatics: Sequences, Structures, Phylogeny (pp. 359-374). Springer Singapore. https://doi.org/10.1007/978-981-13-1562-6_16 Janga, J. K., Reddy, K. R., & Raviteja, K. V. N. S. (2023). Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review. Chemosphere, 345, 140476. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140476 Jiang, M., Wang, K., Wang, Y., Zhao, Q., & Wang, W. (2022). Technologies for the cobalt-contaminated soil remediation: A review. Science of the total environment, 813, 151908. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151908 Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675-687. https://doi.org/https://doi.org/10.1016/j.beth.2020.05.002 Johnston, C. D., Rayner, J. L., & Briegel, D. (2002). Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia. Journal of Contaminant Hydrology, 59(1), 87-111. https://doi.org/https://doi.org/10.1016/S0169-7722(02)00077-3 Jović, A., Brkić, K., & Bogunović, N. (2015, 25-29 May 2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., & Kahru, A. (2014). Environmental effects of soil contamination by shale fuel oils. Environmental Science and Pollution Research, 21(19), 11320-11330. https://doi.org/10.1007/s11356-014-3043-0 Khan, M., & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110(1), 115-125. https://doi.org/https://doi.org/10.1016/S0269-7491(99)00288-2 Kircanski, K., Zhang, S., Stringaris, A., Wiggins, J. L., Towbin, K. E., Pine, D. S., Leibenluft, E., & Brotman, M. A. (2017). Empirically derived patterns of psychiatric symptoms in youth: A latent profile analysis. Journal of Affective Disorders, 216, 109-116. https://doi.org/https://doi.org/10.1016/j.jad.2016.09.016 Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235-2244. https://doi.org/10.1007/s12525-022-00598-0 Kuhn, M., & Johnson, K. (2013). Over-Fitting and Model Tuning. In M. Kuhn & K. Johnson (Eds.), Applied Predictive Modeling (pp. 61-92). Springer New York. https://doi.org/10.1007/978-1-4614-6849-3_4 Kumar, K., & Pande, B. P. (2023). Air pollution prediction with machine learning: a case study of Indian cities. International Journal of Environmental Science and Technology, 20(5), 5333-5348. https://doi.org/10.1007/s13762-022-04241-5 Kumar, V., Singh Aydav, P. S., & Minz, S. (2022). Multi-view ensemble learning using multi-objective particle swarm optimization for high dimensional data classification. Journal of King Saud University - Computer and Information Sciences, 34(10, Part A), 8523-8537. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.08.029 Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. In P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 236 (pp. 1-115). Springer International Publishing. https://doi.org/10.1007/978-3-319-20013-2_1 Kuruvayil, S., & Palaniswamy, S. (2022). Emotion recognition from facial images with simultaneous occlusion, pose and illumination variations using meta-learning. Journal of King Saud University - Computer and Information Sciences, 34(9), 7271-7282. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.06.012 Langley, P. (1996). Elements of machine learning. Morgan Kaufmann. Lasko, T. A., Bhagwat, J. G., Zou, K. H., & Ohno-Machado, L. (2005). The use of receiver operating characteristic curves in biomedical informatics. Journal of Biomedical Informatics, 38(5), 404-415. https://doi.org/https://doi.org/10.1016/j.jbi.2005.02.008 Lee, J.-Y., Lee, C.-H., Lee, K.-K., & Choi, S., II. (2001). Evaluation of Soil Vapor Extraction and Bioventing for a Petroleum-Contaminated Shallow Aquifer in Korea. Soil and Sediment Contamination: An International Journal, 10(4), 439-458. https://doi.org/10.1080/20015891109365 Lim, M. W., Lau, E. V., & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil — Present works and future directions. Marine pollution bulletin, 109(1), 14-45. https://doi.org/https://doi.org/10.1016/j.marpolbul.2016.04.023 Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., & Naidu, R. (2018). Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology & Innovation, 10, 175-193. https://doi.org/https://doi.org/10.1016/j.eti.2018.02.001 Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386. https://doi.org/10.21275/ART20203995 McCarthy, J. (2007). From here to human?level AI. AI., 171(18), 1174-1182. Mehmood, M. U., Chun, D., Zeeshan, Han, H., Jeon, G., & Chen, K. (2019). A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy and Buildings, 202, 109383. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109383 Mineo, S. (2023). Groundwater and soil contamination by LNAPL: State of the art and future challenges. Science of the total environment, 874, 162394. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162394 Mohammed, A., & Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences, 35(2), 757-774. https://doi.org/https://doi.org/10.1016/j.jksuci.2023.01.014 Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Overfitting, Model Tuning, and Evaluation of Prediction Performance. In O. A. Montesinos López, A. Montesinos López, & J. Crossa (Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 109-139). Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-0_4 Moussaoui, F., El Ouadrhiri, F., Saleh, E.-A. M., El Bourachdi, S., Althomali, R. H., Kassem, A. F., Adachi, A., Husain, K., Hassan, I., & Lahkimi, A. (2024). Enhancing hydrochar production and proprieties from biogenic waste: Merging response surface methodology and machine learning for organic pollutant remediation. Journal of Saudi Chemical Society, 28(5), 101920. https://doi.org/https://doi.org/10.1016/j.jscs.2024.101920 Naylor, C. D. (2018). On the Prospects for a (Deep) Learning Health Care System. JAMA, 320(11), 1099-1100. https://doi.org/10.1001/jama.2018.11103 Nazareth, N., & Ramana Reddy, Y. V. (2023). Financial applications of machine learning: A literature review. Expert Systems with Applications, 219, 119640. https://doi.org/https://doi.org/10.1016/j.eswa.2023.119640 Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021). AI Literacy: Definition, Teaching, Evaluation and Ethical Issues. Proceedings of the Association for Information Science and Technology, 58(1), 504-509. https://doi.org/https://doi.org/10.1002/pra2.487 Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565 Nobre, M. M. M., & Nobre, R. C. M. (2004). Soil vapor extraction of chlorinated solvents at an industrial site in Brazil. Journal of hazardous materials, 110(1), 119-127. https://doi.org/https://doi.org/10.1016/j.jhazmat.2004.02.045 Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. 2017 15th international conference on ICT and knowledge engineering (ICT&KE), Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526. https://doi.org/https://doi.org/10.1016/j.eti.2019.100526 Ponce-Bobadilla, A. V., Schmitt, V., Maier, C. S., Mensing, S., & Stodtmann, S. (2024). Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clinical and Translational Science, 17(11), e70056. https://doi.org/https://doi.org/10.1111/cts.70056 Qin, C.-y., Zhao, Y.-s., Zheng, W., & Li, Y.-s. (2010). Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction. Journal of hazardous materials, 176(1), 294-299. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.11.027 Qin, X. S., Huang, G. H., Zeng, G. M., & Chakma, A. (2008). Simulation‐based optimization of dual‐phase vacuum extraction to remove nonaqueous phase liquids in subsurface. Water resources research., 44(4). https://doi.org/10.1029/2006WR005496 Rahbeh, M. E., & Mohtar, R. H. (2007). Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. Journal of hazardous materials, 143(1), 156-170. https://doi.org/https://doi.org/10.1016/j.jhazmat.2006.09.098 Rao, A., Talan, A., Abbas, S., Dev, D., & Taghizadeh-Hesary, F. (2023). The role of natural resources in the management of environmental sustainability: Machine learning approach. Resources Policy, 82, 103548. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103548 Réda, C., Kaufmann, E., & Delahaye-Duriez, A. (2020). Machine learning applications in drug development. Computational and structural biotechnology journal, 18, 241-252. https://doi.org/https://doi.org/10.1016/j.csbj.2019.12.006 Rosellini, A. J., Dussaillant, F., Zubizarreta, J. R., Kessler, R. C., & Rose, S. (2018). Predicting posttraumatic stress disorder following a natural disaster [Article]. Journal of Psychiatric Research, 96, 15-22. https://doi.org/10.1016/j.jpsychires.2017.09.010 Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210 Soares, C., Brazdil, P. B., & Kuba, P. (2004). A Meta-Learning Method to Select the Kernel Width in Support Vector Regression. Machine Learning, 54(3), 195-209. https://doi.org/10.1023/B:MACH.0000015879.28004.9b Stoppiglia, H., Dreyfus, G., Dubois, R., & Oussar, Y. (2003). Ranking a random feature for variable and feature selection. Journal of machine learning research, 3(Mar), 1399-1414. Tang, J., Wang, M., Wang, F., Sun, Q., & Zhou, Q. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845-851. https://doi.org/https://doi.org/10.1016/S1001-0742(10)60517-7 Taoufik, N., Boumya, W., Achak, M., Chennouk, H., Dewil, R., & Barka, N. (2022). The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. Science of the total environment, 807, 150554. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150554 Tharwat, A. (2021). Classification assessment methods. Applied Computing and Informatics, 17(1), 168-192. https://doi.org/10.1016/j.aci.2018.08.003 Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7 Wang, J., & Biljecki, F. (2022). Unsupervised machine learning in urban studies: A systematic review of applications. Cities, 129, 103925. https://doi.org/https://doi.org/10.1016/j.cities.2022.103925 Warkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil and Water Conservation, 50(3), 226-228. https://doi.org/10.1080/00224561.1995.12456954 Wu, T.-K., Huang, S.-C., & Meng, Y.-R. (2008). Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with learning disabilities. Expert Systems with Applications, 34(3), 1846-1856. https://doi.org/https://doi.org/10.1016/j.eswa.2007.02.026 Wu, X., Liu, X., & Zhou, Y. (2022, 2022//). Review of Unsupervised Learning Techniques. Proceedings of 2021 Chinese Intelligent Systems Conference, Singapore. Zhang, S., Zhao, J., & Zhu, L. (2024). Predicting removal efficiency of organic pollutants by soil vapor extraction based on an optimized machine learning method. Science of the total environment, 927, 172438. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172438 Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., & Liu, H. (2010). Advancing feature selection research. ASU feature selection repository, 1-28. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98345 | - |
| dc.description.abstract | 本研究旨在將機器學習應用於污染場址中土壤氣體抽除法之效能評估,建立一套可預測經由土壤氣體抽除法整治後殘留濃度之模型,以協助整治策略判斷與污染場址管理。研究中分別以隨機森林(Random Forest,RF)、XGBoost(eXtreme Gradient Boosting)與支持向量機(Support Vector Machine,SVM)進行回歸及分類預測,並藉由SHAP(Shapley Additive Explanations)分析與皮爾遜相關係數評估各特徵對模型預測結果之貢獻與影響
回歸模型方面,經參數調整後以XGBoost模型表現最佳,R2達0.86,RMSE為137.73ppm,整體的表現都比隨機森林優秀。而特徵分析指出,整治總時長及鄰近觀測井水位都對模型預測具關鍵影響。而在分類模型方面,針對污染濃度設定為150ppm及750ppm分類門檻去進行預測。模型以150ppm為分類門檻時準確率達83.3%,雖略低於750ppm之模型,但整體而言更具穩定性及實用性。三種模型表現都在中上程度但還有進步的空間,根據研究後得出改進方法,在回歸模型方面,需要收集更多特徵,如土壤孔隙率、粒徑及天然有機質含量等影響土壤整治關鍵因素。在分類方面有較嚴重的數據分佈不均問題,導致分類成效不佳,不論在回歸或分類方面,都需要增加更多的數據量,供模型更好地學習與判斷。 | zh_TW |
| dc.description.abstract | This study aims to apply machine learning techniques to evaluate the effectiveness of soil vapor extraction (SVE) at contaminated sites. A predictive model was developed to estimate residual contaminant concentrations after remediation via SVE, with the goal of supporting strategic decision-making and site management. Three machine learning models—Random Forest, eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM)—were used to perform both regression and classification tasks. SHAP (SHapley Additive Explanations) analysis and Pearson correlation coefficients were utilized to assess the contribution and influence of each feature on the model's predictive performance.
For the regression task, after parameter optimization, the XGBoost model demonstrated the best performance, achieving an R² of 0.86 and an RMSE of 137.73ppm, outperforming the Random Forest model. Feature analysis indicated that total remediation duration and groundwater levels in nearby monitoring wells were key factors influencing model predictions. In the classification task, concentration thresholds of 150 ppm and 750 ppm were used to evaluate model performance. When using 150 ppm as the classification threshold, the model achieved an accuracy of 83.3%. Although slightly lower than the performance under the 750 ppm threshold, the 150 ppm model exhibited greater overall stability and practical applicability. All three models demonstrated moderate to strong performance, though there remains room for improvement. Based on the findings, future enhancement strategies are proposed. For regression tasks, incorporating additional features—such as soil porosity, particle size distribution, and natural organic matter content—could improve model accuracy, as these are critical factors affecting SVE performance. In classification tasks, imbalanced data distribution was identified as a major limitation, leading to suboptimal classification accuracy. Therefore, increasing the volume and balance of training data is essential for improving model learning and judgment in both regression and classification applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:06:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:06:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 IV 英文摘要 V 目次 VII 圖次 IX 表次 XI 第 1 章 緒論 1 1.1. 研究起源 1 1.2. 研究動機與目的 3 1.3. 研究內容 7 第 2 章 文獻回顧 8 2.1 氣體抽除法的基本原理與限制 8 2.1.1 土壤氣體抽除法(Soil Vapor Extraction) 8 2.1.2 多相氣體抽取法(multi-phase extraction) 10 2.2 機器學習 13 2.2.1 機器學習概述 13 2.2.2 特徵選擇 16 2.2.3 評估指標 18 2.2.4 常用的機器學習模型 19 2.3 機器學習在土壤整治的應用 24 第 3 章 研究方法 27 3.1. 研究方法流程 27 3.2. 數據收集及預處理 28 3.3. 模型選擇及特徵選擇 28 3.4. 模型訓練與模型測試 29 3.5. 參數調整 30 3.6. SHAP分析 30 第 4 章 結果討論 31 4.1. 隨機森林及XGBOOST模型預測結果 31 4.2. 各特徵SHAP分析 37 4.3. SVM模型預測結果 40 第 5 章 結論與建議 43 參考文獻 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | 隨機森林 | zh_TW |
| dc.subject | 土壤整治 | zh_TW |
| dc.subject | 土壤氣體抽除法 | zh_TW |
| dc.subject | Random Forest | en |
| dc.subject | Machine Learning | en |
| dc.subject | Support Vector Machine | en |
| dc.subject | Soil Remediation | en |
| dc.subject | Soil Vapor Extraction | en |
| dc.title | 機器學習應用於土壤氣體抽除法污染物濃度之預測 | zh_TW |
| dc.title | Application of Machine Learning for Predicting Pollutant Concentration in Soil Vapor Extraction Processes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡景堯;闕蓓德 | zh_TW |
| dc.contributor.oralexamcommittee | Jing-Yao Hu;Pei-Te Chiueh | en |
| dc.subject.keyword | 機器學習,支持向量機,隨機森林,土壤整治,土壤氣體抽除法, | zh_TW |
| dc.subject.keyword | Machine Learning,Support Vector Machine,Random Forest,Soil Remediation,Soil Vapor Extraction, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202502204 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
