Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author吳立芹zh_TW
dc.contributor.authorLi-Chin Wuen
dc.date.accessioned2025-08-04T16:06:23Z-
dc.date.available2025-08-05-
dc.date.copyright2025-08-04-
dc.date.issued2025-
dc.date.submitted2025-07-22-
dc.identifier.citationArene, E. O., & Kitwood, T. M. (1979). An introduction to the chemistry of carbon compounds. Longman. https://doi.org/https://cir.nii.ac.jp/crid/1130282272828932992
Barkhordari, M. S., Zhou, N., Li, K., & Qi, C. (2024). Interpretable machine learning for predicting heavy metal removal efficiency in electrokinetic soil remediation. Journal of Environmental Chemical Engineering, 12(6), 114330. https://doi.org/https://doi.org/10.1016/j.jece.2024.114330
Barnes David, L., Cosden, E., Johnson, B., Johnson, K., Stjärnström, S., Johansson, K., & Filler, D. (2012). Operation of Soil Vapor Extraction in Cold Climates. In Cold Regions Engineering (pp. 956-967). https://doi.org/doi:10.1061/40621(254)83
10.1061/40621(254)83
Baştanlar, Y., & Özuysal, M. (2014). Introduction to Machine Learning. In M. Yousef & J. Allmer (Eds.), miRNomics: MicroRNA Biology and Computational Analysis (pp. 105-128). Humana Press. https://doi.org/10.1007/978-1-62703-748-8_7
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. https://doi.org/10.1109/TPAMI.2013.50
Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? The Journal of Arthroplasty, 33(8), 2358-2361. https://doi.org/https://doi.org/10.1016/j.arth.2018.02.067
Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245-271. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00063-5
Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79. https://doi.org/https://doi.org/10.1016/j.neucom.2017.11.077
Cao, H., Xin, Y., & Yuan, Q. (2016). Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource technology, 202, 158-164. https://doi.org/https://doi.org/10.1016/j.biortech.2015.12.024
Carter, M. R., Gregorich, E. G., Anderson, D. W., Doran, J. W., Janzen, H. H., & Pierce, F. J. (1997). Chapter 1 Concepts of soil quality and their significance. In E. G. Gregorich & M. R. Carter (Eds.), Developments in Soil Science (Vol. 25, pp. 1-19). Elsevier. https://doi.org/https://doi.org/10.1016/S0166-2481(97)80028-1
Chen, H., Cao, Y., Qin, W., Lin, K., Yang, Y., Liu, C., & Ji, H. (2024). Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons. Science of the total environment, 927, 172173. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172173
Chiang, L. H., Braun, B., Wang, Z., & Castillo, I. (2022). Towards artificial intelligence at scale in the chemical industry. AIChE Journal, 68(6), e17644. https://doi.org/https://doi.org/10.1002/aic.17644
Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2021.102383
Ding, Y., Zhang, Y., Deng, Z., Song, H., Wang, J., & Guo, H. (2022). An innovative method for soil vapor extraction to improve extraction and tail gas treatment efficiency. Scientific Reports, 12(1), 6495. https://doi.org/10.1038/s41598-022-08734-8
El Naqa, I., & Murphy, M. J. (2015). What Is Machine Learning? In I. El Naqa, R. Li, & M. J. Murphy (Eds.), Machine Learning in Radiation Oncology: Theory and Applications (pp. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1
Eneh, O. C. (2011). A review on petroleum: Source, uses, processing, products and the environment. Journal of applied sciences, 11(12), 2084-2091. https://doi.org/10.3923/jas.2011.2084.2091
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
Hassanizadeh, M., & Gray, W. G. (1979). General conservation equations for multi-phase systems: 1. Averaging procedure. Advances in Water Resources, 2, 131-144. https://doi.org/https://doi.org/10.1016/0309-1708(79)90025-3
Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69-76. https://doi.org/10.1007/s12178-020-09600-8
Jamal, S., Goyal, S., Grover, A., & Shanker, A. (2018). Machine Learning: What, Why, and How? In A. Shanker (Ed.), Bioinformatics: Sequences, Structures, Phylogeny (pp. 359-374). Springer Singapore. https://doi.org/10.1007/978-981-13-1562-6_16
Janga, J. K., Reddy, K. R., & Raviteja, K. V. N. S. (2023). Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review. Chemosphere, 345, 140476. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140476
Jiang, M., Wang, K., Wang, Y., Zhao, Q., & Wang, W. (2022). Technologies for the cobalt-contaminated soil remediation: A review. Science of the total environment, 813, 151908. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151908
Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675-687. https://doi.org/https://doi.org/10.1016/j.beth.2020.05.002
Johnston, C. D., Rayner, J. L., & Briegel, D. (2002). Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia. Journal of Contaminant Hydrology, 59(1), 87-111. https://doi.org/https://doi.org/10.1016/S0169-7722(02)00077-3
Jović, A., Brkić, K., & Bogunović, N. (2015, 25-29 May 2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., & Kahru, A. (2014). Environmental effects of soil contamination by shale fuel oils. Environmental Science and Pollution Research, 21(19), 11320-11330. https://doi.org/10.1007/s11356-014-3043-0
Khan, M., & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110(1), 115-125. https://doi.org/https://doi.org/10.1016/S0269-7491(99)00288-2
Kircanski, K., Zhang, S., Stringaris, A., Wiggins, J. L., Towbin, K. E., Pine, D. S., Leibenluft, E., & Brotman, M. A. (2017). Empirically derived patterns of psychiatric symptoms in youth: A latent profile analysis. Journal of Affective Disorders, 216, 109-116. https://doi.org/https://doi.org/10.1016/j.jad.2016.09.016
Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. Electronic Markets, 32(4), 2235-2244. https://doi.org/10.1007/s12525-022-00598-0
Kuhn, M., & Johnson, K. (2013). Over-Fitting and Model Tuning. In M. Kuhn & K. Johnson (Eds.), Applied Predictive Modeling (pp. 61-92). Springer New York. https://doi.org/10.1007/978-1-4614-6849-3_4
Kumar, K., & Pande, B. P. (2023). Air pollution prediction with machine learning: a case study of Indian cities. International Journal of Environmental Science and Technology, 20(5), 5333-5348. https://doi.org/10.1007/s13762-022-04241-5
Kumar, V., Singh Aydav, P. S., & Minz, S. (2022). Multi-view ensemble learning using multi-objective particle swarm optimization for high dimensional data classification. Journal of King Saud University - Computer and Information Sciences, 34(10, Part A), 8523-8537. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.08.029
Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. In P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 236 (pp. 1-115). Springer International Publishing. https://doi.org/10.1007/978-3-319-20013-2_1
Kuruvayil, S., & Palaniswamy, S. (2022). Emotion recognition from facial images with simultaneous occlusion, pose and illumination variations using meta-learning. Journal of King Saud University - Computer and Information Sciences, 34(9), 7271-7282. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.06.012
Langley, P. (1996). Elements of machine learning. Morgan Kaufmann.
Lasko, T. A., Bhagwat, J. G., Zou, K. H., & Ohno-Machado, L. (2005). The use of receiver operating characteristic curves in biomedical informatics. Journal of Biomedical Informatics, 38(5), 404-415. https://doi.org/https://doi.org/10.1016/j.jbi.2005.02.008
Lee, J.-Y., Lee, C.-H., Lee, K.-K., & Choi, S., II. (2001). Evaluation of Soil Vapor Extraction and Bioventing for a Petroleum-Contaminated Shallow Aquifer in Korea. Soil and Sediment Contamination: An International Journal, 10(4), 439-458. https://doi.org/10.1080/20015891109365
Lim, M. W., Lau, E. V., & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil — Present works and future directions. Marine pollution bulletin, 109(1), 14-45. https://doi.org/https://doi.org/10.1016/j.marpolbul.2016.04.023
Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., & Naidu, R. (2018). Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology & Innovation, 10, 175-193. https://doi.org/https://doi.org/10.1016/j.eti.2018.02.001
Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386. https://doi.org/10.21275/ART20203995
McCarthy, J. (2007). From here to human?level AI. AI., 171(18), 1174-1182.
Mehmood, M. U., Chun, D., Zeeshan, Han, H., Jeon, G., & Chen, K. (2019). A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy and Buildings, 202, 109383. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109383
Mineo, S. (2023). Groundwater and soil contamination by LNAPL: State of the art and future challenges. Science of the total environment, 874, 162394. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162394
Mohammed, A., & Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University - Computer and Information Sciences, 35(2), 757-774. https://doi.org/https://doi.org/10.1016/j.jksuci.2023.01.014
Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Overfitting, Model Tuning, and Evaluation of Prediction Performance. In O. A. Montesinos López, A. Montesinos López, & J. Crossa (Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 109-139). Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-0_4
Moussaoui, F., El Ouadrhiri, F., Saleh, E.-A. M., El Bourachdi, S., Althomali, R. H., Kassem, A. F., Adachi, A., Husain, K., Hassan, I., & Lahkimi, A. (2024). Enhancing hydrochar production and proprieties from biogenic waste: Merging response surface methodology and machine learning for organic pollutant remediation. Journal of Saudi Chemical Society, 28(5), 101920. https://doi.org/https://doi.org/10.1016/j.jscs.2024.101920
Naylor, C. D. (2018). On the Prospects for a (Deep) Learning Health Care System. JAMA, 320(11), 1099-1100. https://doi.org/10.1001/jama.2018.11103
Nazareth, N., & Ramana Reddy, Y. V. (2023). Financial applications of machine learning: A literature review. Expert Systems with Applications, 219, 119640. https://doi.org/https://doi.org/10.1016/j.eswa.2023.119640
Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021). AI Literacy: Definition, Teaching, Evaluation and Ethical Issues. Proceedings of the Association for Information Science and Technology, 58(1), 504-509. https://doi.org/https://doi.org/10.1002/pra2.487
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565
Nobre, M. M. M., & Nobre, R. C. M. (2004). Soil vapor extraction of chlorinated solvents at an industrial site in Brazil. Journal of hazardous materials, 110(1), 119-127. https://doi.org/https://doi.org/10.1016/j.jhazmat.2004.02.045
Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. 2017 15th international conference on ICT and knowledge engineering (ICT&KE),
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526. https://doi.org/https://doi.org/10.1016/j.eti.2019.100526
Ponce-Bobadilla, A. V., Schmitt, V., Maier, C. S., Mensing, S., & Stodtmann, S. (2024). Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clinical and Translational Science, 17(11), e70056. https://doi.org/https://doi.org/10.1111/cts.70056
Qin, C.-y., Zhao, Y.-s., Zheng, W., & Li, Y.-s. (2010). Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction. Journal of hazardous materials, 176(1), 294-299. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.11.027
Qin, X. S., Huang, G. H., Zeng, G. M., & Chakma, A. (2008). Simulation‐based optimization of dual‐phase vacuum extraction to remove nonaqueous phase liquids in subsurface. Water resources research., 44(4). https://doi.org/10.1029/2006WR005496
Rahbeh, M. E., & Mohtar, R. H. (2007). Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. Journal of hazardous materials, 143(1), 156-170. https://doi.org/https://doi.org/10.1016/j.jhazmat.2006.09.098
Rao, A., Talan, A., Abbas, S., Dev, D., & Taghizadeh-Hesary, F. (2023). The role of natural resources in the management of environmental sustainability: Machine learning approach. Resources Policy, 82, 103548. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103548
Réda, C., Kaufmann, E., & Delahaye-Duriez, A. (2020). Machine learning applications in drug development. Computational and structural biotechnology journal, 18, 241-252. https://doi.org/https://doi.org/10.1016/j.csbj.2019.12.006
Rosellini, A. J., Dussaillant, F., Zubizarreta, J. R., Kessler, R. C., & Rose, S. (2018). Predicting posttraumatic stress disorder following a natural disaster [Article]. Journal of Psychiatric Research, 96, 15-22. https://doi.org/10.1016/j.jpsychires.2017.09.010
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
Soares, C., Brazdil, P. B., & Kuba, P. (2004). A Meta-Learning Method to Select the Kernel Width in Support Vector Regression. Machine Learning, 54(3), 195-209. https://doi.org/10.1023/B:MACH.0000015879.28004.9b
Stoppiglia, H., Dreyfus, G., Dubois, R., & Oussar, Y. (2003). Ranking a random feature for variable and feature selection. Journal of machine learning research, 3(Mar), 1399-1414.
Tang, J., Wang, M., Wang, F., Sun, Q., & Zhou, Q. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845-851. https://doi.org/https://doi.org/10.1016/S1001-0742(10)60517-7
Taoufik, N., Boumya, W., Achak, M., Chennouk, H., Dewil, R., & Barka, N. (2022). The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. Science of the total environment, 807, 150554. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150554
Tharwat, A. (2021). Classification assessment methods. Applied Computing and Informatics, 17(1), 168-192. https://doi.org/10.1016/j.aci.2018.08.003
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7
Wang, J., & Biljecki, F. (2022). Unsupervised machine learning in urban studies: A systematic review of applications. Cities, 129, 103925. https://doi.org/https://doi.org/10.1016/j.cities.2022.103925
Warkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil and Water Conservation, 50(3), 226-228. https://doi.org/10.1080/00224561.1995.12456954
Wu, T.-K., Huang, S.-C., & Meng, Y.-R. (2008). Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with learning disabilities. Expert Systems with Applications, 34(3), 1846-1856. https://doi.org/https://doi.org/10.1016/j.eswa.2007.02.026
Wu, X., Liu, X., & Zhou, Y. (2022, 2022//). Review of Unsupervised Learning Techniques. Proceedings of 2021 Chinese Intelligent Systems Conference, Singapore.
Zhang, S., Zhao, J., & Zhu, L. (2024). Predicting removal efficiency of organic pollutants by soil vapor extraction based on an optimized machine learning method. Science of the total environment, 927, 172438. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172438
Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., & Liu, H. (2010). Advancing feature selection research. ASU feature selection repository, 1-28.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98345-
dc.description.abstract本研究旨在將機器學習應用於污染場址中土壤氣體抽除法之效能評估,建立一套可預測經由土壤氣體抽除法整治後殘留濃度之模型,以協助整治策略判斷與污染場址管理。研究中分別以隨機森林(Random Forest,RF)、XGBoost(eXtreme Gradient Boosting)與支持向量機(Support Vector Machine,SVM)進行回歸及分類預測,並藉由SHAP(Shapley Additive Explanations)分析與皮爾遜相關係數評估各特徵對模型預測結果之貢獻與影響
回歸模型方面,經參數調整後以XGBoost模型表現最佳,R2達0.86,RMSE為137.73ppm,整體的表現都比隨機森林優秀。而特徵分析指出,整治總時長及鄰近觀測井水位都對模型預測具關鍵影響。而在分類模型方面,針對污染濃度設定為150ppm及750ppm分類門檻去進行預測。模型以150ppm為分類門檻時準確率達83.3%,雖略低於750ppm之模型,但整體而言更具穩定性及實用性。三種模型表現都在中上程度但還有進步的空間,根據研究後得出改進方法,在回歸模型方面,需要收集更多特徵,如土壤孔隙率、粒徑及天然有機質含量等影響土壤整治關鍵因素。在分類方面有較嚴重的數據分佈不均問題,導致分類成效不佳,不論在回歸或分類方面,都需要增加更多的數據量,供模型更好地學習與判斷。
zh_TW
dc.description.abstractThis study aims to apply machine learning techniques to evaluate the effectiveness of soil vapor extraction (SVE) at contaminated sites. A predictive model was developed to estimate residual contaminant concentrations after remediation via SVE, with the goal of supporting strategic decision-making and site management. Three machine learning models—Random Forest, eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM)—were used to perform both regression and classification tasks. SHAP (SHapley Additive Explanations) analysis and Pearson correlation coefficients were utilized to assess the contribution and influence of each feature on the model's predictive performance.
For the regression task, after parameter optimization, the XGBoost model demonstrated the best performance, achieving an R² of 0.86 and an RMSE of 137.73ppm, outperforming the Random Forest model. Feature analysis indicated that total remediation duration and groundwater levels in nearby monitoring wells were key factors influencing model predictions.
In the classification task, concentration thresholds of 150 ppm and 750 ppm were used to evaluate model performance. When using 150 ppm as the classification threshold, the model achieved an accuracy of 83.3%. Although slightly lower than the performance under the 750 ppm threshold, the 150 ppm model exhibited greater overall stability and practical applicability.
All three models demonstrated moderate to strong performance, though there remains room for improvement. Based on the findings, future enhancement strategies are proposed. For regression tasks, incorporating additional features—such as soil porosity, particle size distribution, and natural organic matter content—could improve model accuracy, as these are critical factors affecting SVE performance. In classification tasks, imbalanced data distribution was identified as a major limitation, leading to suboptimal classification accuracy. Therefore, increasing the volume and balance of training data is essential for improving model learning and judgment in both regression and classification applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:06:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-04T16:06:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 IV
英文摘要 V
目次 VII
圖次 IX
表次 XI
第 1 章 緒論 1
1.1. 研究起源 1
1.2. 研究動機與目的 3
1.3. 研究內容 7
第 2 章 文獻回顧 8
2.1 氣體抽除法的基本原理與限制 8
2.1.1 土壤氣體抽除法(Soil Vapor Extraction) 8
2.1.2 多相氣體抽取法(multi-phase extraction) 10
2.2 機器學習 13
2.2.1 機器學習概述 13
2.2.2 特徵選擇 16
2.2.3 評估指標 18
2.2.4 常用的機器學習模型 19
2.3 機器學習在土壤整治的應用 24
第 3 章 研究方法 27
3.1. 研究方法流程 27
3.2. 數據收集及預處理 28
3.3. 模型選擇及特徵選擇 28
3.4. 模型訓練與模型測試 29
3.5. 參數調整 30
3.6. SHAP分析 30
第 4 章 結果討論 31
4.1. 隨機森林及XGBOOST模型預測結果 31
4.2. 各特徵SHAP分析 37
4.3. SVM模型預測結果 40
第 5 章 結論與建議 43
參考文獻 44
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subject支持向量機zh_TW
dc.subject隨機森林zh_TW
dc.subject土壤整治zh_TW
dc.subject土壤氣體抽除法zh_TW
dc.subjectRandom Foresten
dc.subjectMachine Learningen
dc.subjectSupport Vector Machineen
dc.subjectSoil Remediationen
dc.subjectSoil Vapor Extractionen
dc.title機器學習應用於土壤氣體抽除法污染物濃度之預測zh_TW
dc.titleApplication of Machine Learning for Predicting Pollutant Concentration in Soil Vapor Extraction Processesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡景堯;闕蓓德zh_TW
dc.contributor.oralexamcommitteeJing-Yao Hu;Pei-Te Chiuehen
dc.subject.keyword機器學習,支持向量機,隨機森林,土壤整治,土壤氣體抽除法,zh_TW
dc.subject.keywordMachine Learning,Support Vector Machine,Random Forest,Soil Remediation,Soil Vapor Extraction,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202502204-
dc.rights.note未授權-
dc.date.accepted2025-07-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved