請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98340完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | zh_TW |
| dc.contributor.advisor | Pen-hsiu Grace Chao | en |
| dc.contributor.author | 黃士安 | zh_TW |
| dc.contributor.author | Shih-An Huang | en |
| dc.date.accessioned | 2025-08-04T16:05:04Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Pockwinse, S.M., et al., Developmental stage-specific cellular responses to vitamin D and glucocorticoids during differentiation of the osteoblast phenotype: interrelationship of morphology and gene expression by in situ hybridization. Exp Cell Res, 1995. 216(1): p. 244-60.
Spiegelman, B.M. and C.A. Ginty, Fibronectin modulation of cell shape and lipogenic gene expression in 3t3-adipocytes. Cell, 1983. 35(3): p. 657-666. Werner, M., et al., Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh), 2017. 4(2): p. 1600347. Chen, T., et al., Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nat Phys, 2019. 15: p. 393-402. Katsumi, A., et al., Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem, 2005. 280(17): p. 16546-9. Kolega, J., Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol, 1986. 102(4): p. 1400-11. Xu, H., et al., Continuous cyclic mechanical tension increases ank expression in endplate chondrocytes through the TGF-beta1 and p38 pathway. Eur J Histochem, 2013. 57(3): p. e28. Ingber, D.E., Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 1997. 59: p. 575-99. Szczesny, S.E. and R.L. Mauck, The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng, 2017. 139(2): p. 0210061-02100616. Nathan, A.S., et al., Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater, 2011. 7(1): p. 57-66. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34. Chan, C.E. and D.J. Odde, Traction dynamics of filopodia on compliant substrates. Science, 2008. 322(5908): p. 1687-91. Werner, M., et al., Cell-Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration. Adv Biosyst, 2019. 3(10): p. e1900080. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004. 6(4): p. 483-95. Chen, Y., et al., Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover. Proc Natl Acad Sci U S A, 2013. 110(26): p. E2352-61. Small, J.V., et al., The lamellipodium: where motility begins. Trends Cell Biol, 2002. 12(3): p. 112-20. Pantaloni, D., C. Le Clainche, and M.F. Carlier, Mechanism of actin-based motility. Science, 2001. 292(5521): p. 1502-6. Pollard, T.D. and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003. 112(4): p. 453-65. Tang, D.D. and B.D. Gerlach, The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res, 2017. 18(1): p. 54. Pollard, T.D., Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 2007. 36: p. 451-77. Munevar, S., Y.L. Wang, and M. Dembo, Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell, 2001. 12(12): p. 3947-54. Pollard, T.D. and J.A. Cooper, Actin, a central player in cell shape and movement. Science, 2009. 326(5957): p. 1208-12. Parker, K.K., et al., Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J, 2002. 16(10): p. 1195-204. Tajik, A., et al., Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater, 2016. 15(12): p. 1287-1296. Maniotis, A.J., C.S. Chen, and D.E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A, 1997. 94(3): p. 849-54. Lee, J.S., et al., Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J, 2007. 93(7): p. 2542-52. Ingber, D., Integrins as mechanochemical transducers. Curr Opin Cell Biol, 1991. 3(5): p. 841-8. He, X. and Y. Jiang, Substrate curvature regulates cell migration. Phys Biol, 2017. 14(3): p. 035006. Vassaux, M. and J.L. Milan, Stem cell mechanical behaviour modelling: substrate's curvature influence during adhesion. Biomech Model Mechanobiol, 2017. 16(4): p. 1295-1308. Thomas, C.H., et al., Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci U S A, 2002. 99(4): p. 1972-7. Mao, X., N. Gavara, and G. Song, Nuclear Mechanics and Stem Cell Differentiation. Stem Cell Rev Rep, 2015. 11(6): p. 804-12. Shao, Y., et al., Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr Biol (Camb), 2014. 6(3): p. 300-11. Dupont, S., et al., Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474(7350): p. 179-83. Varelas, X., The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 2014. 141(8): p. 1614-26. Yu, F.X., et al., Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell, 2014. 25(6): p. 822-30. Zhao, B., et al., The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010. 24(9): p. 862-74. Hu, Y., et al., YAP suppresses gluconeogenic gene expression through PGC1alpha. Hepatology, 2017. 66(6): p. 2029-2041. Cai, D., et al., Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol, 2019. 21(12): p. 1578-1589. Yu, F.X., B. Zhao, and K.L. Guan, Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015. 163(4): p. 811-28. Piccolo, S., S. Dupont, and M. Cordenonsi, The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev, 2014. 94(4): p. 1287-312. Elosegui-Artola, A., et al., Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell, 2017. 171(6): p. 1397-1410 e14. Bertrand, A.T., et al., Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci, 2014. 127(Pt 13): p. 2873-84. Koushki, N., et al., Nuclear compression regulates YAP spatiotemporal fluctuations in living cells. Proc Natl Acad Sci U S A, 2023. 120(28): p. e2301285120. Pavel, M., et al., Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun, 2018. 9(1): p. 2961. Gao, T., et al., Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology, 2013. 144(7): p. 1543-53, 1553 e1. Schlegelmilch, K., et al., Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell, 2011. 144(5): p. 782-95. Driscoll, T.P., et al., Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells. Biophys J, 2015. 108(12): p. 2783-93. Elosegui-Artola, A., et al., Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol, 2016. 18(5): p. 540-8. Wozniak, M.A. and C.S. Chen, Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol, 2009. 10(1): p. 34-43. Das, A., et al., YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. J Biol Chem, 2016. 291(12): p. 6096-110. Olson, E.N. and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol, 2010. 11(5): p. 353-65. Aragona, M., et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 2013. 154(5): p. 1047-1059. Benham-Pyle, B.W., B.L. Pruitt, and W.J. Nelson, Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science, 2015. 348(6238): p. 1024-7. Halder, G., S. Dupont, and S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol, 2012. 13(9): p. 591-600. Wada, K., et al., Hippo pathway regulation by cell morphology and stress fibers. Development, 2011. 138(18): p. 3907-14. Cui, Y., et al., Cyclic stretching of soft substrates induces spreading and growth. Nat Commun, 2015. 6: p. 6333. Freedman, B.R., et al., Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage. J Orthop Res, 2015. 33(6): p. 904-10. Franchi, M., et al., Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat, 2007. 210(1): p. 1-7. Pirog, K.A., et al., A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mol Genet, 2010. 19(1): p. 52-64. Kaur, A., et al., Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov, 2019. 9(1): p. 64-81. van der Putten, C., et al., Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments. ACS Appl Mater Interfaces, 2021. 13(22): p. 25589-25598. Lake, S.P., et al., Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J Orthop Res, 2009. 27(12): p. 1596-602. Grace Chao, P.H., H.Y. Hsu, and H.Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. Wen, S.M., W.C. Wen, and P.G. Chao, Zyxin and actin structure confer anisotropic YAP mechanotransduction. Acta Biomater, 2022. 152: p. 313-320. 黃勁勛, 捲曲型態對細胞牽引力的效果, in 醫學工程學研究所. 2019, 國立臺灣大學. p. 1-39. Fischer, R.S., et al., Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc Natl Acad Sci U S A, 2021. 118(22). Jan, N.J., et al., Crimp around the globe; patterns of collagen crimp across the corneoscleral shell. Exp Eye Res, 2018. 172: p. 159-170. Spiesz, E.M., et al., Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM). Acta Biomater, 2018. 70: p. 281-292. Martiel, J.L., et al., Measurement of cell traction forces with ImageJ. Methods Cell Biol, 2015. 125: p. 269-87. Diaz, G., et al., Elliptic fourier analysis of cell and nuclear shapes. Comput Biomed Res, 1989. 22(5): p. 405-14. 胡安妮, 捲曲細胞中細胞核拉伸應變之衰變. 2018. Papalazarou, V. and L.M. Machesky, The cell pushes back: The Arp2/3 complex is a key orchestrator of cellular responses to environmental forces. Curr Opin Cell Biol, 2021. 68: p. 37-44. Chua, X.L., et al., Competition and synergy of Arp2/3 and formins in nucleating actin waves. Cell Rep, 2024. 43(7): p. 114423. Bieling, P., et al., Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks. Cell, 2016. 164(1-2): p. 115-127. Engler, A., et al., Substrate compliance versus ligand density in cell on gel responses. Biophys J, 2004. 86(1 Pt 1): p. 617-28. Burridge, K. and K. Wennerberg, Rho and Rac take center stage. Cell, 2004. 116(2): p. 167-79. Leeuwen, F.N., et al., The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J Cell Biol, 1997. 139(3): p. 797-807. Ridley, A.J. and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 1992. 70(3): p. 389-99. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98340 | - |
| dc.description.abstract | 彈性結締組織如韌帶和動脈,含有波浪狀排列的組織纖維結構,這些結構會隨著疾病、損傷和老化而改變。我們先前研究發現,這類波浪結構影響細胞形狀與表型,促進韌帶成纖維細胞膠原蛋白生成,以及血管平滑肌細胞收縮蛋白表現。結合微製成技術與牽引力顯微鏡(TFM),我們亦觀察到波浪形細胞隨曲率增加展現更大的牽引力與細胞核變形。然而,細胞如何感知這些波浪狀結構並對壓力做出反應的機制仍不清楚。研究表明,細胞形狀透過與細胞骨架的相互作用來影響細胞核形狀與基因表現。YAP(Yes-associated protein)作為關鍵的機械敏感轉錄因子,其核定位已被廣泛應用於評估細胞張力與機械訊號的變化。
本研究以微接觸列印技術模擬波浪狀微環境,並探討肌球蛋白II與Arp2/3在波浪形細胞中對YAP活性的調控作用。我們觀察到波浪狀細胞表現出較大的細胞核變形程度與YAP核定位,並在拉伸刺激下增強。肌球蛋白II介導細胞張力形成與拉伸下的細胞核變形;而Arp2/3則影響軸向張力與動態機械轉導路徑,影響細胞對外力的整體反應。 | zh_TW |
| dc.description.abstract | Elastic connective tissues, such as ligaments and arteries, contain wavy arrangements of tissue fibers that change with disease, injury, and aging. Our previous studies have shown that these wavy structures affect cell shape and phenotype, promoting collagen production in ligamentous fibroblasts and contractile protein expression in vascular smooth muscle cells. Combining microfabrication with traction force microscopy (TFM), we have also observed that wavy cells exhibit greater traction and nuclear deformation with increasing curvature. However, the mechanism of how cells perceive these wavy structures and respond to stress remains unclear. Studies have shown that cell shape affects nuclear shape and gene expression through interactions with the cytoskeleton. YAP-associated protein, as a key mechanosensitive transcription factor, has been widely used to assess changes in cell tension and mechanical signals due to its nuclear localization.
In this study, we used a microcontact printing to simulate a wavy microenvironment and investigated the role of myosin II and Arp2/3 in the regulation of YAP activity in wavy cells. We observed that wavy cells exhibited a greater degree of nuclear deformation and localization of YAP nuclei, which was enhanced under tensile stimulation. Myosin II mediates cellular tension formation and nuclear deformation under stretch, whereas Arp2/3 affects axial tension and dynamic mechanotransduction pathways, influencing the overall cellular response to external forces. Our findings emphasize the importance of cytoskeletal coordination in integrating external and geometric signals into nuclear signals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:05:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:05:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 .......................................................................................................................................... i
中文摘要 .................................................................................................................................. ii Abstract .................................................................................................................................. iii Contents ................................................................................................................................. iv List of Figure ........................................................................................................................... v Chapter1. Introductions ......................................................................................................... 1 1.1 Cellular Mechanotranstuction ...................................................................................... 1 1.2 Cytoskeletal Coordination of Mechanosensing and Signal Transmission ................... 2 1.3 Mechanoregulation of YAP Activity ............................................................................. 3 1.4 Role of Cytoskeletal Components in Regulating YAP Activity .................................... 4 1.5 Effects of Wavy Morphology ........................................................................................ 5 Chapter2. Material and Methods ........................................................................................... 7 2.1 Microfabrication ........................................................................................................... 7 2.2 Labeling of fibronectin .................................................................................................. 7 2.3 Microcontact printing ................................................................................................... 8 2.4 Traction Force Microscopy ........................................................................................... 8 2.4.1 Glass Silanization ....................................................................................................... 8 2.4.2 Microprinting of Polyacrylamide Hydrogel............................................................... 9 2.4.3 Traction Force Microscopy ...................................................................................... 10 2.5 Cell culture .................................................................................................................. 12 2.6 Cellular stretching ....................................................................................................... 12 2.7 Immunofluorescence and Microscopy ........................................................................ 13 2.8 Inhibitor treatment...................................................................................................... 13 2.9 Image analysis ............................................................................................................. 14 2.10 Static analysis ............................................................................................................ 15 Chapter3. Results .................................................................................................................. 16 3.1 Wavy cell morphology increase nuclear deformation ................................................ 16 3.2 Wavy structure increased YAP nuclear localization .................................................. 18 3.3 Effects of myosin II and Arp2/3 on YAP translocation in wavy cells ........................ 20 3.4 Cytoskeletal components mediate cellular traction in wavy cells .............................. 28 Chapter4. Discussion ............................................................................................................ 33 Reference ............................................................................................................................... 38 | - |
| dc.language.iso | en | - |
| dc.subject | YAP | zh_TW |
| dc.subject | 力生物傳導 | zh_TW |
| dc.subject | 單軸向拉伸 | zh_TW |
| dc.subject | 牽引力 | zh_TW |
| dc.subject | 細胞型態 | zh_TW |
| dc.subject | uniaxial stretching | en |
| dc.subject | YAP | en |
| dc.subject | mechanotransduction | en |
| dc.subject | cell shape | en |
| dc.subject | traction force | en |
| dc.title | 波浪狀細胞中的YAP機械傳導 | zh_TW |
| dc.title | YAP Mechanotransduction in Wavy Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林耿慧;劉雅雯;郭津岑 | zh_TW |
| dc.contributor.oralexamcommittee | Keng-hui Lin;Ya-Wen Liu;Jean-Cheng Kuo | en |
| dc.subject.keyword | YAP,力生物傳導,單軸向拉伸,牽引力,細胞型態, | zh_TW |
| dc.subject.keyword | YAP,mechanotransduction,uniaxial stretching,traction force,cell shape, | en |
| dc.relation.page | 42 | - |
| dc.identifier.doi | 10.6342/NTU202502710 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
