Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98332
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信希zh_TW
dc.contributor.advisorHsin-Hsi Chenen
dc.contributor.author潘淙軒zh_TW
dc.contributor.authorTsung-Hsuan Panen
dc.date.accessioned2025-08-01T16:15:13Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citationC. Anderson and S. Drossopoulou. BabyJ: from object based to class based programming via types. WOOD, 82(7):53–81, 2003.
N. D. Cao, W. Aziz, and I. Titov. Editing factual knowledge in language models. In Conference on Empirical Methods in Natural Language Processing, 2021.
Y. Chen, Z. Zhang, X. Han, C. Xiao, Z. Liu, C. Chen, K. Li, T. Yang, and M. Sun. Robust and scalable model editing for large language models. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 14157–14172, 2024.
P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018.
R. Cohen, E. Biran, O. Yoran, A. Globerson, and M. Geva. Evaluating the ripple effects of knowledge editing in language models. Transactions of the Association for Computational Linguistics, 12:283–298, 2023.
F. Delebecque, C. Gomez, M. Goursat, R. Nikoukhah, S. Steer, and J.-P. Chancelier. Scilab.
R. Di Cosmo and M. Danelutto. The parmap library.
R. Di Cosmo and M. Danelutto. The parmap library.
J. Fang, H. Jiang, K. Wang, Y. Ma, S. Jie, X. Wang, X. He, and T.-S. Chua. Alphaedit: Null-space constrained knowledge editing for language models. In The Thirteenth International Conference on Learning Representations, 2025.
Z. Gekhman, G. Yona, R. Aharoni, M. Eyal, A. Feder, R. Reichart, and J. Herzig. Does fine-tuning llms on new knowledge encourage hallucinations? In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 7765–7784, 2024.
M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5484–5495, 2021.
T. Goldsack, Y. Wang, C. Lin, and C.-C. Chen. From facts to insights: A study on the generation and evaluation of analytical reports for deciphering earnings calls. In O. Rambow, L. Wanner, M. Apidianaki, H. Al-Khalifa, B. D. Eugenio, and S. Schockaert, editors, Proceedings of the 31st International Conference on Computational Linguistics, pages 10576–10593, Abu Dhabi, UAE, Jan. 2025. Association for Computational Linguistics.
B. Greenman and M. Felleisen. tag-sound.
J.-C. Gu, H. Xu, J.-Y. Ma, P. Lu, Z.-H. Ling, K.-W. Chang, and N. Peng. Model editing can hurt general abilities of large language models. ArXiv, abs/2401.04700, 2024.
A. Gupta, A. Rao, and G. K. Anumanchipalli. Model editing at scale leads to gradual and catastrophic forgetting. ArXiv, abs/2401.07453, 2024.
T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural Information Processing Systems, 36, 2024.
J. Hoelscher-Obermaier, J. Persson, E. Kran, I. Konstas, and F. Barez. Detecting edit failures in large language models: An improved specificity benchmark. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023, pages 11548–11559, Toronto, Canada, July 2023. Association for Computational Linguistics.
J. Kasai, K. Sakaguchi, Y. Takahashi, R. L. Bras, A. Asai, X. V. Yu, D. R. Radev, N. A. Smith, Y. Choi, and K. Inui. Realtime qa: What’s the answer right now? ArXiv, abs/2207.13332, 2022.
O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. Zero-shot relation extraction via reading comprehension. ArXiv, abs/1706.04115, 2017.
K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in gpt. In Neural Information Processing Systems, 2022.
K. Meng, A. S. Sharma, A. Andonian, Y. Belinkov, and D. Bau. Mass-editing memory in a transformer. ArXiv, abs/2210.07229, 2022.
T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In Conference on Empirical Methods in Natural Language Processing, 2018.
E. Mitchell, C. Lin, A. Bosselut, C. D. Manning, and C. Finn. Memory-based model editing at scale. In International Conference on Machine Learning, pages 15817–15831. PMLR, 2022.
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners. 2019.
R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36:53728–53741, 2023.
H. Soudani, E. Kanoulas, and F. Hasibi. Fine tuning vs. retrieval augmented generation for less popular knowledge. In Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, SIGIR-AP 2024, page 12–22. ACM, Dec. 2024.
The CGAL Project. The computational geometry algorithms library.
H. Touvron, L. Martin, K. R. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. M. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. S. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. M. Kloumann, A. V. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models. ArXiv, abs/2307.09288, 2023.
P. Wang, N. Zhang, X. Xie, Y. Yao, B. Tian, M. Wang, Z. Xi, S. Cheng, K. Liu, Y. Ni, G. Zheng, and H. Chen. Easyedit: An easy-to-use knowledge editing framework for large language models. ArXiv, abs/2308.07269, 2023.
Q. Wu, X. Xiang, H. Huang, X. Wang, Y. W. Jie, R. Satapathy, R. S. Filho, and B. Veeravalli. Susgen-gpt: A data-centric llm for financial nlp and sustainability report generation. In Findings of the Association for Computational Linguistics: NAACL 2025, 2025
J. Xie, K. Zhang, J. Chen, R. Lou, and Y. Su. Adaptive chameleon or stubborn sloth: Revealing the behavior of large language models in knowledge conflicts. In The Twelfth International Conference on Learning Representations, 2023.
R. Xu, Z. Qi, Z. Guo, C. Wang, H. Wang, Y. Zhang, and W. Xu. Knowledge conflicts for LLMs: A survey. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8541–8565, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics.
W. Xu, Y. Mao, X. Zhang, C. Zhang, X. Dong, M. Zhang, and Y. Gao. Dagent: A relational database-driven data analysis report generation agent. arXiv preprint arXiv:2503.13269, 2025.
W. Yang, F. Sun, X. Ma, X. Liu, D. Yin, and X. Cheng. The butterfly effect of model editing: Few edits can trigger large language models collapse. arXiv preprint arXiv:2402.09656, 2024.
Y. Yao, P. Wang, B. Tian, S. Cheng, Z. Li, S. Deng, H. Chen, and N. Zhang. Editing large language models: Problems, methods, and opportunities. In Conference on Empirical Methods in Natural Language Processing, 2023.
X. Yin, J. Jiang, L. Yang, and X. Wan. History matters: Temporal knowledge editing in large language model. ArXiv, abs/2312.05497, 2023.
L. Yu, Q. Chen, J. Zhou, and L. He. Melo: Enhancing model editing with neuron-indexed dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 19449–19457, 2024.
C. Zhu, D. Li, F. Yu, M. Zaheer, S. Kumar, S. Bhojanapalli, and A. S. Rawat. Modifying memories in transformer models. (2020), 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98332-
dc.description.abstract從頭開始訓練大型語言模型(LLMs)是一項昂貴的工作,特別是在世界知識不斷演變的背景下。為了保持 LLMs 的相關性與準確性,模型編輯已成為一個關鍵的研究領域。然而,儘管這些方法充滿潛力,但其成效與副作用背後的潛在因素,特別是知識本身的特性如何影響編輯結果,仍然大多未被探討。本論文對此進行了系統性的研究,深入分析了知識的三個核心維度——流行度、模型對其的熟悉度 以及問題類型 ——如何影響模型編輯的成功率與穩定性。我們的實驗結果一致地表明,編輯「流行」或模型「未知」的知識,成功率顯著更高;而不同的問題類型,尤其是「Why」與「Which」之間,也表現出截然不同的編輯難度與副作用程度。此外,本論文揭示了一個在傳統問答評測中無法發現的、全新的副作用,我們將其命名為「生成性失語症」。此現象表現為,即使模型在事實層面已成功編輯,其長文本生成能力卻可能嚴重受損,出現內容不連貫或重複等問題。這一發現證明了現有評估方法的不足之處。基於上述洞見,本論文進一步提出並驗證了一個「知識診斷編輯框架」,該框架能根據知識的特性,智能地調整編輯策略,從而有效提升困難案例的編輯成功率。總體而言,本研究不僅為模型編輯的成敗提供了系統性的解釋,也為未來發展更可靠、更安全的編輯技術與評估標準,指出了明確的方向。zh_TW
dc.description.abstractTraining large language models (LLMs) from scratch is an expensive endeavor, particularly as world knowledge continually evolves. To maintain the relevance and accuracy of LLMs, model editing has emerged as a pivotal research area. While these methods hold promise, they can also produce unintended side effects, and the influence of the target knowledge's characteristics on editing outcomes remains underexplored.

This thesis delves into these critical factors by systematically analyzing how the nature of knowledge---specifically its popularity, the model's prior familiarity with it, and the question type used to elicit it---affects the success and stability of model editing. Using the RealTimeQA dataset with representative editing methods on LLaMA-3 models, our experiments reveal several key findings. We demonstrate that edits involving popular or previously unknown knowledge are significantly more successful, and that question type has a profound impact on both editing efficacy and the severity of side effects .

Furthermore, while state-of-the-art methods like AlphaEdit exhibit perfect stability on standard question-answering benchmarks, we identify a novel and critical failure mode in more complex, long-form generative tasks, which we term "Generative Aphasia" . This phenomenon, characterized by disruptions in coherence and fluency despite accurate factual recall, reveals that conventional evaluation metrics are insufficient.

Based on our findings, we propose and validate a Knowledge-Diagnostic framework that adapts the editing strategy to the difficulty of the target knowledge, significantly improving performance in challenging cases. Our work underscores the necessity of a more nuanced, context-aware approach to model editing and calls for the adoption of more comprehensive evaluation protocols that include generative tasks to ensure truly robust and reliable knowledge integration.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:15:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:15:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 Related Work 4
2.1 Taxonomy of Model Editing 4
2.1.1 Preserving Model Parameters 4
2.1.2 Modifying Model Parameters 5
2.2 Rationale for Modifying Parameters 6
2.3 Deep Dive: Editing Algorithms 8
2.3.1 The Locate-and-Edit Process 8
2.3.2 MEMIT: Mass-Editing Memory in a Transformer 9
2.3.3 AlphaEdit: Null-Space Constrained Editing 9
2.4 Evaluating Model Editing 10
2.4.1 Core Evaluation Metrics 11
2.4.2 Side Effect Evaluation 11
Chapter 3 Methodology 14
3.1 Task Definition 14
3.2 The Knowledge Spectrum 15
3.2.1 Popularity 16
3.2.2 Familiarity 16
3.2.3 Question Type 17
3.3 The Knowledge-Diagnostic Framework 17
3.4 Experimental Datasets 19
3.4.1 RealTimeQA: A Dynamic Knowledge Source 19
3.4.2 Supplier Chain Dataset: A Testbed for Generative Aphasia 21
Chapter 4 Experimental Results 23
4.1 Impact of Familiarity: Known vs. Unknown 23
4.1.1 Editing Performance 23
4.1.2 Impact on General Ability 24
4.2 Impact of Popularity: Famous vs. Unfamous 25
4.2.1 Editing Performance 25
4.2.2 Impact on General Ability 26
4.3 Question Type Analysis 27
4.3.1 Impact on Editing Performance 27
4.3.2 Impact on General Ability 28
4.4 Validating the Diagnostic Framework 30
4.4.1 Experimental Validation 30
4.4.2 Practical Implications: A Cost-Benefit Analysis 32
4.5 Discovery of Generative Aphasia 34
4.5.1 Experimental Design: Long-Form Financial Report Generation 34
4.5.2 A New Failure Mode: Identifying Generative Aphasia 35
Chapter 5 Discussion 40
5.1 The Challenge of Overwriting: Known vs. Unknown Knowledge 40
5.2 The Influence of Representational Clarity: Famous vs. Unfamous Knowledge 41
5.3 The Nuances of Knowledge Structure: ’Why’ vs. ’Which’ Questions 43
5.4 Iterative Refinement in AlphaEdit 44
5.5 The Paradox of Precision and Generative Aphasia 46
Chapter 6 Conclusion 48
Chapter 7 Future Work 50
References 52
-
dc.language.isoen-
dc.subject大型語言模型zh_TW
dc.subject模型編輯zh_TW
dc.subjectModel Editingen
dc.subjectLarge Language Modelen
dc.title基於知識診斷之動態大型語言模型編輯框架zh_TW
dc.titleAn Adaptive Editing Framework for Large Language Models based on Knowledge Diagnosticsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee古倫維;鄭卜壬;陳建錦zh_TW
dc.contributor.oralexamcommitteeLun-Wei Ku;Pu-Jen Cheng;Chien-Chin Chenen
dc.subject.keyword大型語言模型,模型編輯,zh_TW
dc.subject.keywordLarge Language Model,Model Editing,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202502519-
dc.rights.note未授權-
dc.date.accepted2025-07-29-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved