請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭典翰 | zh_TW |
| dc.contributor.advisor | Dian-Han Kuo | en |
| dc.contributor.author | 李家容 | zh_TW |
| dc.contributor.author | Chia-Rong Li | en |
| dc.date.accessioned | 2025-08-01T16:13:38Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | Agee, S. J., Lyons, D. C., & Weisblat, D. A. (2006). Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Developmental Biology, 298(1), 1–11. https://doi.org/10.1016/j.ydbio.2006.06.021
Astrow, S., Holton, B., & Weisblat, D. A. (1987). Centrifugation redistributes factors determining cleavage patterns in leech embryos. Developmental Biology, 120(2), 270–283. https://doi.org/10.1016/0012-1606(87)90164-X Beloussov, L. V., & Meshcheryakov, V. N. (1975). Asymmetrical rotations of blastomeres in early cleavage of gastropoda. Wilhelm Roux's Archives of Developmental Biology, 177, 193–203. https://doi.org/10.1007/BF00848234 Bissen, S. T., & Weisblat, D. A. (1987). Early differences between alternate n blast cells in leech embryo. Journal of Neurobiology, 18(3), 251–269. https://doi.org/10.1002/neu.480180306 Bissen, S. T., & Weisblat, D. A. (1989). The durations and compositions of cell cycles in embryos of the leech, Helobdella triserialis. Development, 106(1), 105–118. https://doi.org/10.1242/dev.106.1.105 Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T., & Kemphues, K. J. (1996). PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development, 122(10), 3075–3084. https://doi.org/10.1242/dev.122.10.3075 Crotty, D. A., & Gann, A. (Eds.). (2009). *Emerging model organisms: A laboratory manual* (Vol. 1). Cold Spring Harbor Laboratory Press. Driever, W., & Nüsslein-Volhard, C. (1988). A gradient of bicoid protein in Drosophila embryos. Cell, 54(1), 83–93. https://doi.org/10.1016/0092-8674(88)90182-1 Etemad-Moghadam, B., Guo, S., & Kemphues, K. J. (1995). Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell, 83(5), 743–752. https://doi.org/10.1016/0092-8674(95)90188-3 Fernandez, J., & Stent, G. S. (1980). Embryonic development of the glossiphoniid leech Theromyzon rude: Structure and development of the germinal band. Developmental Biology, 78, 407–434. https://doi.org/10.1016/0012-1606(80)90344-9 Fischer, J. A. (2003). Deubiquitinating enzymes: Their roles in development, differentiation, and disease. International Review of Cytology, 229, 43–72. https://doi.org/10.1016/S0074-7696(03)01002-4 Gline, S. E., Kuo, D. H., Stolfi, A., & Weisblat, D. A. (2009). High resolution cell lineage tracing reveals developmental variability in leech. Developmental Dynamics, 238(12), 3139–3151. https://doi.org/10.1002/dvdy.22131 Gline, S. E., Nakamoto, A., Cho, S. J., Chi, C., & Weisblat, D. A. (2011). Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Developmental Biology, 353(1), 120–133. https://doi.org/10.1016/j.ydbio.2011.02.016 Henry, J. J., Perry, K. J., Fukui, L., & Alvi, N. (2010). Differential localization of mRNAs during early development in the mollusc, Crepidula fornicata. Integrative and Comparative Biology, 50(5), 720–733. https://doi.org/10.1093/icb/icq098 Henry, J. Q. (2014). Spiralian model systems. International Journal of Developmental Biology, 58, 389–401. https://doi.org/10.1387/ijdb.140108jh Holton, B., Wedeen, C. J., Astrow, S. H., & Weisblat, D. A. (1994). Localization of polyadenylated RNAs during teloplasm formation and cleavage in leech embryos. Roux's Archives of Developmental Biology, 204(1), 46–53. https://doi.org/10.1007/BF01419471 Hsaio, S., Saglam, N., Morrow, D., & Shain, D. H. (2024). Transcriptomic profiling at the maternal-to-zygotic transition in leech, Helobdella austinensis. Genes, 15(3), 283. https://doi.org/10.3390/genes15030283 Huang, F. Z., Kang, D., Ramirez-Weber, F. A., Bissen, S. T., & Weisblat, D. A. (2002). Micromere lineage in the glossiphoniid leech Helobdella. Development, 129(3), 719–732. https://doi.org/10.1242/dev.129.3.719 Irish, V., Lehmann, R., & Akam, M. (1989). The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 338(6217), 646–648. https://doi.org/10.1038/338646a0 Kang, D., Pilon, M., & Weisblat, D. A. (2002). Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: Primordial germ cells arise from segmental mesoderm. Developmental Biology, 245(1), 28–41. https://doi.org/10.1006/dbio.2002.0610 Kemphues, K. J., Priess, J. R., Morton, D. G., & Cheng, N. S. (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell, 52(3), 311–320. https://doi.org/10.1016/0092-8674(88)90526-5 Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132(4), 583–597. https://doi.org/10.1016/j.cell.2008.02.007 Kuo, D.-H. (2017). The polychaete-to-clitellate transition: An EvoDevo perspective. Developmental Biology, 427(2), 230–240. https://doi.org/10.1016/j.ydbio.2017.04.002 Kuo, D. H., & Hsiao, Y. H. (2018). Duplicated FoxA genes in the leech Helobdella: Insights into the evolution of direct development in clitellate annelids. Developmental Dynamics, 247(5), 763-778. Kwak, H. J., Lee, S. G., Park, S. C., Kim, J. H., Weisblat, D. A., Park, C., & Cho, S. J. (2022). Head transcriptome profiling of glossiphoniid leech (Helobdella austinensis) reveals clues about proboscis development. Open Biology, 12(3), 210298. https://doi.org/10.1098/rsob.210298 Lambert, J. D., & Nagy, L. M. (2002). Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature, 420(6916), 682–686. https://doi.org/10.1038/nature01264 Lasko, P. (2012). mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harbor Perspectives in Biology, 4(10), a012294. https://doi.org/10.1101/cshperspect.a012294 Lehmann, R., & Nüsslein-Volhard, C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development, 112(3), 679–691. https://doi.org/10.1242/dev.112.3.679 Martín-Durán, J. M., & Marlétaz, F. (2020). Unravelling spiral cleavage. Development, 147(1), dev181081. https://doi.org/10.1242/dev.181081 Martindale, M., & Shankland, M. (1990). Intrinsic segmental identity of segmental founder cells of the leech embryo. Nature, 347, 672–674. https://doi.org/10.1038/347672a0 Nakamoto, A., Nagy, L. M., & Shimizu, T. (2011). Secondary embryonic axis formation by transplantation of D quadrant micromeres in an oligochaete annelid. Development, 138(2), 283–290. https://doi.org/10.1242/dev.057703 Nelson, B. H., & Weisblat, D. A. (1991). Conversion of ectoderm to mesoderm by cytoplasmic extrusion in leech embryos. Science, 253(5021), 435–438. https://doi.org/10.1126/science.1857960 Nishida, H., & Sawada, K. (2001). macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature, 409(6821), 724–729. https://doi.org/10.1038/35055568 Pilon, M., & Weisblat, D. A. (1997). A nanos homolog in leech. Development, 124(9), 1771–1780. https://doi.org/10.1242/dev.124.9.1771 Ramirez, F. A. (1995). Morphogenesis and engrailed-class gene expression during development of the glossiphoniid leech central nervous system [Doctoral dissertation, University of California, Berkeley]. Seudre, O., Carrillo-Baltodano, A. M., Liang, Y., & Martín-Durán, J. M. (2022). ERK1/2 is an ancestral organising signal in spiral cleavage. Nature Communications, 13, 2286. https://doi.org/10.1038/s41467-022-29970-6 Shain, D. H., Stuart, D. K., Huang, F. Z., & Weisblat, D. A. (2000). Segmentation of the central nervous system in leech. Development, 127(4), 735–744. https://doi.org/10.1242/dev.127.4.735 Shlyakhtina, Y., Moran, K. L., & Portal, M. M. (2019). Asymmetric inheritance of cell fate determinants: Focus on RNA. Non-coding RNA, 5(2), 38. https://doi.org/10.3390/ncrna5020038 Simakov, O., Marlétaz, F., Cho, S. J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., … Rokshar, D. S. (2013). Insights into bilaterian evolution from three spiralian genomes. Nature, 493(7433), 526–531. https://doi.org/10.1038/nature11696 Smith, C. M., Lans, D., & Weisblat, D. A. (1996). Cellular mechanisms of epiboly in leech embryos. Development, 122(6), 1885–1894. https://doi.org/10.1242/dev.122.6.1885 Toralova, T., Kinterova, V., Chmelikova, E., & Kanka, J. (2020). The neglected part of early embryonic development: Maternal protein degradation. Cellular and Molecular Life Sciences, 77, 3177–3194. https://doi.org/10.1007/s00018-020-03488-2 Weisblat, D. A., & Huang, F. Z. (2001). An overview of glossiphoniid leech development. Canadian Journal of Zoology, 79(2), 218–232. https://doi.org/10.1139/z00-195 Weisblat, D. A., & Kuo, D. H. (2014). Developmental biology of the leech Helobdella. International Journal of Developmental Biology, 58, 429–438. https://doi.org/10.1387/ijdb.140105dw Weisblat, D. A., Sawyer, R. T., & Stent, G. S. (1978). Cell lineage analysis by intracellular injection of a tracer enzyme. Science, 202(4371), 1295–1298. https://doi.org/10.1126/science.725605 Weisblat, D. A., & Shankland, M. (1985). Cell lineage and segmentation in the leech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 312(1153), 39–56. https://doi.org/10.1098/rstb.1985.0003 Wessels, H.-H., Stirn, A., Méndez-Mancilla, A., Kim, E. J., Hart, S. K., Knowles, D. A., & Sanjana, N. E. (2024). Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nature Biotechnology, 42, 628–637. https://doi.org/10.1038/s41587-023-01991-y Whitman, C. O. (1878). The embryology of Clepsine. Quarterly Journal of Microscopical Science, 18, 213–315. Whitman, C. O. (1887). A contribution to the history of the germ-layer in Clepsine. Journal of Morphology, 1, 105–182. Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Seminars in Cell & Developmental Biology, 11(3), 141–148. https://doi.org/10.1006/scdb.2000.0167 Zackson, S. L. (1982). Cell clones and segmentation in leech development. Cell, 31(3 Pt 2), 761–770. https://doi.org/10.1016/0092-8674(82)90337-2 Zackson, S. L. (1984). Cell lineage, cell-cell interaction, and segment formation in the ectoderm of a glossiphoniid leech embryo. Developmental Biology, 104(1), 143–160. https://doi.org/10.1016/0012-1606(84)90017-7 Zhang, S. O., Kuo, D. H., & Weisblat, D. A. (2009). Grandparental stem cells in leech segmentation: Differences in CDC42 expression are correlated with an alternating pattern of blast cell fates. Developmental Biology, 336(1), 112–121. https://doi.org/10.1016/j.ydbio.2009.09.015 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98325 | - |
| dc.description.abstract | 細胞內物質的不對稱分離對澤蛭的早期胚胎發育至關重要。在卵裂過程中,一部分被稱為 teloplasm 的細胞質隨著細胞分裂分配至五對左右對稱的eloblasts,決定其細胞類型。Teloblasts 進行多次幹細胞式不對稱分裂,產生一連串的初級胚母細胞 (primary blast cells),進而發育為體節構造。胚胎學實驗顯示,N teloblasts 及初級胚母細胞的細胞命運並不需要細胞之間的交互作用,而是由細胞不對稱分裂自主調控產生,其分子機制仍不清楚。本研究首先對於Hau-EGL13a進行基因表現位置及功能性研究。Hau-EGL13a是透過EST-based 原位雜交染色檢測所發現、對teloblast 具有專一性的基因,透過原位雜交染色,我發現該基因除了在N teloblast以外,還會表現在M teloblast。以 Cas13d對N teloblast進行Hau-EGL13a knockdown後並未造成可觀測的發育異常,表示該基因可能僅參與較為晚期的胚胎發育而非決定N細胞命運的決定因子。接著,我透過轉錄體分析找出在N teloblasts中有較高表現量的基因,並鑑定尋找可能影響 N teloblasts 命運的發育基因。而原位雜交染色顯示,在 N teloblasts 中表現較高的基因大多並非專一地表現在 N teloblasts,而是廣泛分布於各 teloblasts。Gene Ontology 分析顯示,在 N teloblasts 中高表現的基因主要與細胞生理活動相關,而非參與在胚胎發育或是細胞分化的過程。綜合而言,由母源mRNA不對稱分布所形成的細胞質決定物 (cytoplasmic determinant) 模型應該不是決定N teloblasts 命運的機制。除了以RNA作為決定因子影響細胞命運外,透過蛋白質的不對稱分布引起區域性的轉譯調控同樣能在細胞分裂時使兩顆細胞產生不同的命運。參考上述模型,未來的研究方向應著重於蛋白質層面的分析,包含轉譯以及後轉錄修飾的調控。 | zh_TW |
| dc.description.abstract | Asymmetric segregation of cytoplasmic determinants plays a critical role in the early development of the leech. During cleavage, a pool of cytoplasm called teloplasm segregates into five bilateral pairs of teloblasts to specify teloblast identities. A teloblast then undergoes iterated stem-cell-like asymmetric divisions to produce a bandlet of primary blast cells, or segment founder cells, each gives rise to a set of serially homologous progeny. Among the five teloblast pairs, the N eloblast mainly contributes to the central nervous system. Embryological experiments revealed that, fate specification of N teloblasts and primary blast cells is cell autonomous. However, molecular identities for the determinants of teloblasts and primary blast cells remain elusive. In this study, I first investigated the expression pattern and function of Hau-EGL13a, a teloblast-specific gene identified through an EST-based in situ hybridization screen. Although initially detected in the N teloblast, Hau-EGL13a was also expressed in the M teloblast. Cas13d-mediated knockdown of Hau-EGL13a in the N teloblast did not result in observable phenotypic changes, suggesting that it functions as a regulator of later developmental processes in teloblasts rather than serving as a determinant of initial cell fate. Subsequently, I performed transcriptome analysis to identify potential RNA determinants of N fate by searching for transcripts enriched in N teloblasts. Unexpectedly, most statistically significant candidates are only slightly enriched in N teloblast. In situ hybridization analysis showed that they are broadly distributed and not specifically localized to the N teloblast. GO analysis indicated that these N-enriched genes are most related to metabolic process, and are not associated with embryonic development or cell differentiation. Together, our results suggest that the molecular mechanism for the specification of N teloblast does not follow the standard model of cytoplasmic determinant in which transcripts encoding for developmental regulatory genes is specifically segregated into a blastomere to specify its developmental fate. In addition to the RNA segregation model, another prevalent mechanism for specifying cell identity during embryonic development is protein localization, which is commonly observed across diverse species. Accordingly, future research should focus on protein-level processes, including translational control and transcriptional regulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:13:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:13:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables x Introduction 1 Materials and Methods 6 Laboratory Helobdella austinensis (Hau) culturing 6 Embryo collection 6 Microinjection 6 Living N teloblasts isolation 7 Time-lapse video recording 7 Isolation of N teloblasts in RNAlater 7 RNA extraction 7 RNA sequencing 8 De novo assembly 8 Differentially expressed genes (DEG) analysis 8 Gene ontology analysis 9 Preparation of cDNA 9 Probe synthesis 9 In situ hybridization 11 Cas13d mRNA preparation 13 Guiding RNA (gRNA) preparation 13 Gene knockdown 13 Results 15 Monitoring teloblast development with lineage tracer 15 Hau-EGL13a, a teloblast-localized mRNA, is not required for teloblast identity 16 Development of blastomere isolation protocol 18 Production of the N teloblast transcriptome: RNA sequencing and data processing 23 Identification of differentially expressed genes 25 Validating the DEG analysis with in situ hybridization 27 Gene Ontology enrichments among the differentially expressed genes 27 Discussion 30 References 34 Figures 41 | - |
| dc.language.iso | en | - |
| dc.subject | 不對稱分裂 | zh_TW |
| dc.subject | 胚胎發育 | zh_TW |
| dc.subject | Gene ontology | zh_TW |
| dc.subject | 轉錄體 | zh_TW |
| dc.subject | RNA定序 | zh_TW |
| dc.subject | RNA sequencing | en |
| dc.subject | transcriptome | en |
| dc.subject | gene ontology | en |
| dc.subject | asymmetric division | en |
| dc.subject | embryonic development | en |
| dc.title | 澤蛭 N teloblast 的轉錄體分析 | zh_TW |
| dc.title | Transcriptomic analysis of N teloblast in the leech Helobdella austinensis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游智凱;張俊哲 | zh_TW |
| dc.contributor.oralexamcommittee | Jr-Kai Yu;Chun-Che Chang | en |
| dc.subject.keyword | 胚胎發育,不對稱分裂,RNA定序,轉錄體,Gene ontology, | zh_TW |
| dc.subject.keyword | embryonic development,asymmetric division,RNA sequencing,transcriptome,gene ontology, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202502160 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
