Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98310
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author萬文甯zh_TW
dc.contributor.authorWen-Ning Wanen
dc.date.accessioned2025-08-01T16:10:05Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] Robert Hooke, Denis Papin, and James Young. Lectures de potentia restitutiva; or, of spring, explaining the power of springing bodies: to which are added some collections: viz. a description of dr. pappin’s wind-fountain and force-pump. mr. young’s observation concerning natural fountains, 1980.
[2] W. C. Oliver et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6):1564–1583, 1992.
[3] T. W. Clyne et al. An introduction to composite materials. Cambridge University Press, 2019.
[4] K. K. Gupta. A brief history of the beginning of the finite element method. International Journal for Numerical Methods in Engineering, 39(22):3761–3774, 1996.
[5] J. Yvonnet. Computational homogenization of heterogeneous materials with finite elements, volume 258. Springer, 2019.
[6] H. Wei et al. Ls-dyna machine learning–based multiscale method for nonlinear modeling of short fiber–reinforced composites. Journal of Engineering Mechanics, 149(3):04023003, 2023.
[7] M. F. Horstemeyer. Multiscale modeling: a review. Practical Aspects of Computational Chemistry: Methods, Concepts and Applications, pages 87–135, 2009.
[8] F. Feyel et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183(3-4):309–330, 2000.
[9] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5):357–372, 1963.
[10] H. Zhang et al. Low-voltage driven ionic polymer-metal composite actuators: struc- tures, materials, and applications. Advanced Science, 10(10):2206135, 2023.
[11] M. Bhong et al. Review of composite materials and applications. Materials Today: Proceedings, 2023.
[12] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226):376–396, 1957.
[13] T. Mori et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571–574, 1973.
[14] S. G. Advani. The use of tensors to describe and predict fiber orientation in short fiber composites. Journal of Rheology, 31(8):751–784, 1987.
[15] H. Moulinec et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1-2):69–94, 1998.
[16] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386, 1958.
[17] M. Lefik et al. Artificial neural networks in numerical modelling of composites. Computer Methods in Applied Mechanics and Engineering, 198(21-26):1785–1804, 2009.
[18] H. Yang et al. Exploring elastoplastic constitutive law of microstructured mate- rials through artificial neural network—a mechanistic-based data-driven approach. Journal of Applied Mechanics, 87(9):091005, 06 2020.
[19] C. Rao et al. Three-dimensional convolutional neural network (3d-cnn) for hetero- geneous material homogenization. Computational Materials Science, 184:109850, 2020.
[20] N. N. Vlassis et al. Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 371:113299, 2020.
[21] N. N. Vlassis et al. Geometric learning for computational mechanics part ii: Graph embedding for interpretable multiscale plasticity. Computer Methods in Applied Mechanics and Engineering, 404:115768, 2023.
[22] Z. Liu et al. A deep material network for multiscale topology learning and acceler- ated nonlinear modeling of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 345:1138–1168, 2019.
[23] L. Noels et al. Interaction-based material network: A general framework for (porous) microstructured materials. Computer Methods in Applied Mechanics and Engineering, 389:114300, 2022.
[24] T. J. Wei et al. Deep material network: Overview, applications and current directions. arXiv preprint arXiv:2504.12159, 2025.
[25] Sebastian G. et al. On the micromechanics of deep material networks. Journal of the Mechanics and Physics of Solids, 142:103984, 2020.
[26] B. Sterr et al. Deep material networks for fiber suspensions with infinite material con- trast. International Journal for Numerical Methods in Engineering, 126(7):e70014, 2025.
[27] D. Shin et al. A deep material network approach for predicting the thermomechanical response of composites. Composites Part B: Engineering, 272:111177, 2024.
[28] L. Noels et al. Micromechanics-based material networks revisited from the inter- action viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics-A/Solids, 91:104384, 2022.
[29] T. J. Wei et al. Orientation-aware interaction-based deep material network in poly- crystalline materials modeling. arXiv preprint arXiv:2502.02457, 2025.
[30] KEYWORD USER’S MANUAL. Ansys ls-dyna®. 2025.
[31] T. Erhart. An overview of user defined interfaces in ls-dyna. In LS-DYNA Forum, 2010.
[32] Hibbitt et al. ABAQUS/Standard: User’s manual, volume 1. Hibbitt, Karlsson & Sorensen, 1997.
[33] H. S. Suh et al. A publicly available pytorch-abaqus umat deep-learning framework for level-set plasticity. Mechanics of Materials, 184:104682, 2023.
[34] I. A. Baratta et al. Dolfinx: the next generation fenics problem solving environment. 2023.
[35] Y. Z. Chen et al. An efficient parameterized neural network enhanced multiscale finite element modeling for triply periodic minimal surface meta-structures and its applications for femur. Journal of Materials Research and Technology, 30:6176– 6194, 2024.
[36] R. Anderson et al. Mfem: A modular finite element methods library. Computers & Mathematics with Applications, 81:42–74, 2021.
[37] K. Mittal et al. Mixed-order meshes through rp-adaptivity for surface fitting to im- plicit geometries. In Proceedings of the 2024 International Meshing Roundtable, pages 118–131. SIAM, 2024.
[38] W. N. Wan et al. Decoding material networks: exploring performance of deep mate- rial network and interaction-based material networks. Journal of Mechanics, 40:796– 807, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98310-
dc.description.abstract交互式材料網路(IMN)引入了代表性體積元素(RVE)內部的應力平衡方向交互機制,使其能有效地模擬複合材料的內部微觀結構力學行為。在本研究中,我們建立了一個雙尺度模擬框架,將 IMN 與商用有限元素分析(FEM)軟體整合,以促進彈塑性複合材料的多尺度模擬,在巨觀尺度下,我們使用 LS-DYNA 執行分析,並以 IMN 作為微觀材料的替代模型,透過立方體的單軸載重測試與孔洞版的顯式模擬,驗證了本框架的預測能力,基準測試進一步突顯出 LS-DYNA 與 IMN 結合後,在計算效率與穩定性上的優越表現。此框架提供了一種具擴展性且高效的方式,推動多尺度模擬技術的發展。zh_TW
dc.description.abstractThe Interaction-based Material Network (IMN) incorporates an interaction mechanism for stress-equilibrium directions within representative volume elements (RVEs). This approach enables the effective modeling of internal microstructural mechanics in elastoplastic composite materials. In this study, we develop a two-scale framework by integrating IMN with commercial finite element method (FEM) software, facilitating multiscale simulations of composite materials. Macroscale analyses are conducted in LS-DYNA, which utilizes IMN as a microscopic material surrogate model. This framework's predictive capabilities are shown by uniaxial loading tests on a one-element mesh and hole-plate problems on an explicit solver. Benchmarking further underscores the LS-DYNA-IMN superior computational efficiency and robustness. This framework establishes a scalable and efficient approach for advancing multiscale simulation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:10:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:10:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Table of Contents ix
List of Illustrations xiii
List of Tables xv
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Literature Review 5
2.1 Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 F E2 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2.1 Averaging Theorem: Strain . . . . . . . . . . . . . . . 10
2.1.2.2 Averaging Theorem: Stress . . . . . . . . . . . . . . . 12
2.1.2.3 Hill-Mandel Lemma . . . . . . . . . . . . . . . . . . . 13
2.1.3 Composite RVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Machine Learning Based Material Model . . . . . . . . . . . . . . . 15
2.2.1 Feed-forward Neural Network . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Graph Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Deep Material Network . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4.1 Rotation-Free DMN . . . . . . . . . . . . . . . . . . . 20
2.2.4.2 Thermomechanical Deep Material Network . . . . . . 21
2.2.4.3 Interaction-based Material Network . . . . . . . . . . . 22
2.2.4.4 Orientation-aware Deep Material Network . . . . . . . 23
2.2.5 Finite Element Analysis Tool . . . . . . . . . . . . . . . . . . . . . 24
2.2.5.1 ANSYS LS-DYNA® . . . . . . . . . . . . . . . . . . 25
2.2.5.2 Abaqus® . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5.3 FEniCS . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5.4 MFEM . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 3 Methodology 29
3.1 Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Online Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Online Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Conclusion on Comparison . . . . . . . . . . . . . . . . . . . . . . 39
3.4 LS-DYNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 4 Result and Discussion 43
4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Timestep Control in Explicit Solver . . . . . . . . . . . . . . . . . 51
Chapter 5 Conclusion and Future Work 53
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References 55
Appendix A — Data of Comparison on IMN and DMN 61
A.1 Online Prediction Time and Total Iterations . . . . . . . . . . . . . . 61
A.2 Online Prediction Accuracy (MSE) . . . . . . . . . . . . . . . . . . 61
Appendix B — LS-DNYA input card of Examples 65
B.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.1.1 Tensile Loading in X Direction . . . . . . . . . . . . . . . . . . . . 65
B.1.2 Loading-unloading in X Direction . . . . . . . . . . . . . . . . . . 67
B.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
-
dc.language.isoen-
dc.subject深度材料網路zh_TW
dc.subject多尺度模擬zh_TW
dc.subject機器學習zh_TW
dc.subject彈塑性材料zh_TW
dc.subjectLS-DYNAzh_TW
dc.subjectLS-DYNAen
dc.subjectelastoplasticityen
dc.subjectmachine learningen
dc.subjectdeep material networken
dc.subjectmultiscale simulationen
dc.title深度材料網路於雙尺度彈塑性問題zh_TW
dc.titleDeep Material Networks for Two-Scale Modeling of Elastoplastic Problemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃琮暉;劉立偉zh_TW
dc.contributor.oralexamcommitteeTsung-Hui Huang;Li-Wei Liuen
dc.subject.keyword多尺度模擬,深度材料網路,LS-DYNA,彈塑性材料,機器學習,zh_TW
dc.subject.keywordmultiscale simulation,deep material network,LS-DYNA,elastoplasticity,machine learning,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202502115-
dc.rights.note未授權-
dc.date.accepted2025-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved