Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98306
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元zh_TW
dc.contributor.advisorShih-Yuan Chenen
dc.contributor.author陳韋丞zh_TW
dc.contributor.authorWei-Cheng Chenen
dc.date.accessioned2025-08-01T16:09:14Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationT. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5g cellular: It will work!," IEEE Access, vol. , 2013.
S. I. H. Shah, S. Bashir, M. Ashfaq, A. Altaf, and H. Rmili, "Lightweight and low-cost deployable origami antennas a review," IEEE Access, vol. , 2021.
S. O. Slawomir Koziel, Antenna Design by Simulation-Driven Optimization. Springer Cham, 2014.
N. Sarker, P. Podder, M. R. H. Mondal, S. S. Shafin, and J. Kamruzzaman, "Applications of machine learning and deep learning in antenna design, optimization, and selection: A review," IEEE Access, vol. , 2023.
L.-Y. Xiao, W. Shao, F.-L. Jin, B.-Z. Wang, and Q. H. Liu, "Inverse artificial neural network for multiobjective antenna design," IEEE Transactions on Antennas and Propagation, vol. , no. 10, 2021.
M. Kim, J. Gu, Y. Yuan, T. Yun, Z. Liu, Y. Bengio, and C. Chen, "Offline model-based optimization: Comprehensive review," 2025.
Y. He, J. Huang, W. Li, L. Zhang, S.-W. Wong, and Z. N. Chen, "Hybrid method of artificial neural network and simulated annealing algorithm for optimizing wideband patch antennas," IEEE Transactions on Antennas and Propagation, vol. , no. 1, 2024.
Y. Zhou, X. Zhang, and H. Li, "Efficient reflection coefficient prediction and optimization for printed inverted f antenna based on graph neural networks patch antenna design and optimisation by gnn," in 2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE), 2023.
Y. Su, Z. Su, H. Chen, H. Zhao, and X. Yin, "Inverse design of rectangular microstrip patch antenna using neural network combining with time-domain representation of s-parameters," in 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022.
K. A. Wang, N. S. Chatterji, S. Haque, and T. Hashimoto, "Is importance weighting incompatible with interpolating classifiers?," in International Conference on Learning Representations, 2022.
J. P. Jacobs, "Accurate modeling by convolutional neural-network regression of resonant frequencies of dual-band pixelated microstrip antenna," IEEE Antennas and Wireless Propagation Letters, vol. , no. 12, 2021.
W. Chen, Q. Wu, B. Han, C. Yu, H. Wang, and W. Hong, "Efficient incremental variable-fidelity machine-learning-assisted hybrid optimization and its application to multiobjective antenna design," IEEE Transactions on Antennas and Propagation, vol. , no. 12, 2024.
B. Duan, B. Wu, J.-h. Chen, H. Chen, and D.-Q. Yang, "Deep Learning for Photonic Design and Analysis: Principles and Applications," Frontiers in Materials, vol. 8, Jan. 2022. Publisher: Frontiers.
K. Min, B. Choi, K. Park, and E. Cho, "Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials," Scientific Reports, vol. , Oct. 2018. Publisher: Nature Publishing Group.
Q. Wu, Y. Cao, H. Wang, and W. Hong, "Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges," China Communications, vol. , no. 4, 2020.
B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and P. Excell, "An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques," IEEE Transactions on Antennas and Propagation, vol. , no. 1, 2014.
M. O. Akinsolu, B. Liu, V. Grout, P. I. Lazaridis, M. E. Mognaschi, and P. D. Barba, "A parallel surrogate model assisted evolutionary algorithm for electromagnetic design optimization," IEEE Transactions on Emerging Topics in Computational Intelligence, vol. , no. 2, 2019.
L. Cui, Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient knn method for antenna optimization and design," IEEE Transactions on Antennas and Propagation, vol. , no. 10, 2020.
Q. Wu, W. Chen, C. Yu, H. Wang, and W. Hong, "Machine-learning-assisted optimization for antenna geometry design," IEEE Transactions on Antennas and Propagation, vol. , no. 3, 2024.
B. Han, Q. Wu, C. Yu, H. Wang, and W. Hong, "Low-wind-load broadband dual-polarized antenna and array designs using sequential multiphysics machine-learning-assisted optimization," IEEE Transactions on Antennas and Propagation, vol. , no. 1, 2025.
J. Moreno, I. Gonzalez, and D. Rodriguez, "Using simulation and the nsga-ii evolutionary multi-objective algorithm in the design of a compact dual-band equatorial helix antenna," in 2017 6th International Conference on Space Mission Challenges for Information Technology (SMC-IT), 2017.


D. Dyck, D. Lowther, and E. Freeman, "A method of computing the sensitivity of electromagnetic quantities to changes in materials and sources," IEEE Transactions on Magnetics, vol. , no. 5, 1994.
D. Dyck and D. Lowther, "Automated design of magnetic devices by optimizing material distribution," IEEE Transactions on Magnetics, vol. , no. 3, 1996.
T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, "Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique," International Journal for Numerical Methods in Engineering, vol. , no. 11, 2007.
S. Zhou, W. Li, and Q. Li, "Level-set based topology optimization for electromagnetic dipole antenna design," Journal of Computational Physics, vol. , no. 19, 2010.
A. Erentok and O. Sigmund, "Topology optimization of sub-wavelength antennas," IEEE Transactions on Antennas and Propagation, vol. , no. 1, 2011.
E. Hassan, E. Wadbro, and M. Berggren, "Topology optimization of metallic antennas," IEEE Transactions on Antennas and Propagation, vol. , no. 5, 2014.
E. Hassan, D. Noreland, R. Augustine, E. Wadbro, and M. Berggren, "Topology optimization of planar antennas for wideband near-field coupling," IEEE Transactions on Antennas and Propagation, vol. , no. 9, 2015.
S. Liu, Q. Wang, and R. Gao, "Mom-based topology optimization method for planar metallic antenna design," Acta Mechanica Sinica, vol. , Dec. 2016.
J. Wang, X.-S. Yang, X. Ding, and B.-Z. Wang, "Antenna radiation characteristics optimization by a hybrid topological method," IEEE Transactions on Antennas and Propagation, vol. , no. 6, 2017.
J. Wang, X.-S. Yang, X. Ding, and B.-Z. Wang, "Topology optimization of conical-beam antennas exploiting rotational symmetry," IEEE Transactions on Antennas and Propagation, vol. , no. 5, 2018.
L.-L. Wang, X.-S. Yang, and J. Wang, "An efficient topology optimization strategy based on the combination of ga and simp," in 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2022.
L.-L. Wang, X.-S. Yang, and C.-J. Ma, "An efficient gradient-based hybrid parameter-topology optimization for antenna design," IEEE Transactions on Antennas and Propagation, vol. , no. 12, 2023.
H. S. Bhat, "Second-order adjoint method for quantum optimal control," 2025.
Y. Zhong, P. Renner, W. Dou, G. Ye, J. Zhu, and Q. H. Liu, "A machine learning generative method for automating antenna design and optimization," IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. , 2022.
L. Weng, "From gan to wgan," 2019.
T. Karras, T. Aila, S. Laine, and J. Lehtinen, "Progressive growing of gans for improved quality, stability, and variation," 2018.
H. Huang and X.-S. Yang, "An efficient antenna decoupling optimization method using variational auto-encoders," in 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 2024.
S. Koziel, A. Pietrenko-Dabrowska, and S. Szczepanski, "Versatile unsupervised design of antennas using flexible parameterization and computational intelligence methods," Scientific Reports, vol. , Nov. 2024. Publisher: Nature Publishing Group.
Q. Pang, J. Ouyang, F. Yang, S. Yang, and J. Hu, "Inverse design method of antenna based on generative artificial intelligence," IEEE Antennas and Wireless Propagation Letters, 2025.
Z. Wei, Z. Zhou, P. Wang, J. Ren, Y. Yin, G. F. Pedersen, and M. Shen, "Automated antenna design via domain knowledge-informed reinforcement learning and imitation learning," IEEE Transactions on Antennas and Propagation, vol. , no. 7, 2023.
Q. Wang, Z. Pang, D. Gao, P. Liu, X. Zhang, X. Pang, and X. Yin, "Bandwidth enhancement of pixelated patch antennas based on localized reinforcement learning," in 2024 14th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 2024.
Y. Su, Y. Yin, S. Li, H. Zhao, and X. Yin, “Bandwidth improvement for patch antenna via knowledge-based deep reinforcement learning,” IEEE Antennas and Wireless Propagation Letters, vol. , no. 12, 2024.
S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks for heat transfer problems,” Journal of Heat Transfer, vol. , Apr. 2021.
S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks (PINNs) for fluid mechanics: a review,” Acta Mechanica Sinica, vol. , Dec. 2021.
A. S. Krishnapriyan, A. Gholami, S. Zhe, R. M. Kirby, and M. W. Mahoney, “Characterizing possible failure modes in physics-informed neural networks,” 2021.
F. Sahli Costabal, S. Pezzuto, and P. Perdikaris, “Δ -pinns: Physics-informed neural networks on complex geometries,” Engineering Applications of Artificial Intelligence, vol. , Jan. 2024.
J.-P. Liu, B.-Z. Wang, C.-S. Chen, and R. Wang, “Inverse design method for horn antennas based on knowledge-embedded physics-informed neural networks,” IEEE Antennas and Wireless Propagation Letters, vol. , no. 6, 2024.
K. Deng, H. Zhang, J. Lu, and H. Sun, “Hop: Homeomorphic polar learning for hard constrained optimization,” 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98306-
dc.description.abstract天線設計是一個複雜的電磁逆問題,傳統上通常透過基於經驗的啟發式方法或耗時的參數化掃描來解決。本論文旨在實現天線設計流程的自動化和一般化,並比較和討論不同的方法。
研究首先探討並實現以離線機器學習代理人模型微調天線的幾何參數。我們的模型可以實時的根據環境的變化優化操作在2.45 GHz之PIFA天線。類似的離線模型在天線領域有許多其他應用,我們也將對其進行分析討論。其次,我們也嘗試利用像素化形式表示平面天線,從而實現對材料分佈的離散控制。機器學習的引入顯著的加速了優化的流程(MLAO)。這類採用MLAO架構的研究近來蓬勃發展,我們同樣大量分析並討論其方法的優劣。再者,為了應對可擴展性的挑戰,本文介紹了一種基於梯度的最佳化方法,利用帶有懲罰的固體各向同性材料 (SIMP) 方法和伴隨方法進行高效的靈敏度分析。伴隨方法顯著加快了收斂速度,即使在高維設計空間中也是如此。
論文最後討論了新興方法,例如強化學習、生成模型和基於物理的神經網絡等,這些方法或可透過實現即時自適應、更廣泛的設計空間探索和更低的模擬成本來進一步增強天線設計,具有很大的潛力。總而言之,本論文對天線設計自動化進行了深入且廣泛的探討,並統整出一個全面的理解架構,為未來數據驅動和基於物理的設計範式的整合奠定了基礎。
zh_TW
dc.description.abstractAntenna design is essentially an inverse electromagnetic problem, traditionally addressed through empirical heuristic methods or time-consuming parametric sweeps. This thesis aims to automate and generalize the antenna design process while comparing and discussing various approaches.
The study first explores and implements the fine-tuning of antennas using an offline machine learning surrogate model. Our model can optimize a PIFA antenna operating at 2.45 GHz in real-time based on environmental changes. Similar offline model frameworks have numerous other applications in the antenna domain, which will also be analyzed and discussed. Secondly, we attempt to represent planar antennas in a pixelated form, enabling discrete control over material distribution. The introduction of machine learning significantly accelerates the optimization process. Research adopting the MLAO framework has recently flourished, and we extensively analyze and discuss the strengths and weaknesses of these methods. Furthermore, to address scalability challenges, this thesis introduces a well-developed gradient-based optimization approach, utilizing the Solid Isotropic Material with Penalization (SIMP) method and the adjoint method for efficient sensitivity analysis. The adjoint method markedly enhances convergence speed, even in high-dimensional design spaces.
Finally, the thesis discusses emerging methods, such as reinforcement learning, generative models, and physics-based neural networks, which hold significant potential to further enhance antenna design by enabling real-time adaptation, broader design space exploration, and reduced simulation costs. In summary, this thesis provides a thorough and comprehensive exploration of automated antenna design, establishing a robust framework for understanding and laying the foundation for the integration of future data-driven and physics-based antenna design paradigms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:09:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:09:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Denotation xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 2
1.3 Outline 3
Chapter 2 Machine Learning in Antenna Design 5
2.1 Introduction 5
2.2 A Brief Introduction to Machine Learning 6
2.3 Machine Learning in Antenna Design 8
2.3.1 Antenna Design as an Inverse EM Problem 8
2.3.1.1 Optimization-Based Forward Simulation 9
2.3.1.2 Learning the Inverse Function Directly 9
2.3.2 Surrogate Modeling for Antenna Design 9
2.3.2.1 Surrogate Models for Optimization 10
2.3.2.2 Surrogate Models for Inverse Modeling 10
2.4 Advanced Topics in Surrogate Modeling 10
2.4.1 Surrogate vs. Generative Models 10
2.4.1.1 Generative Models. 11
2.4.1.2 Surrogate Models 11
2.4.2 Training a Surrogate Model: Step-by-Step 11
2.4.3 Offline vs. Online Learning. 12
2.4.3.1 Offline (Batch) Learning 12
2.4.3.2 Online Learning 12
Chapter 3 Antenna Design Using Offline Surrogate Model 13
3.1 Recent Developments 13
3.2 Design Example and Goal 14
3.3 Design Region 14
3.4 Design Flow 17
3.4.1 Data Acquisition 17
3.5 Model Selection and Performance 18
3.5.1 Feedforward Neural Network (FNN) 18
3.5.2 Weighted-FNN 20
3.5.3 Recurrent Neural Network (RNN) 21
3.5.4 TabTransformer 21
3.6 Results 23
3.7 Discussion 26
Chapter 4 Antenna Design Using Online Surrogate Models 29
4.1 Machine Learning-Assisted Optimization 29
4.2 1.5 GHz Patch Antenna Design: A Demonstration 31
4.2.1 Design Example and Goal 31
4.2.2 Design Region. 31
4.2.2.1 Topology Coding 33
4.2.2.2 Design Space Diversity 34
4.2.3 Genetic Algorithm (GA) 35
4.2.4 Machine Learning-Assisted Optimization - Genetic Algorithm (MLAO-GA) 38
4.2.5 Results 39
4.3 Discussion 44
Chapter 5 Antenna Design Using Adjoint Method 47
5.1 Introduction to Topology Optimization 47
5.2 Theory of Adjoint Method 49
5.2.1 Optimization Problems 50
5.2.2 The Adjoint Method. 51
5.3 1.5 GHz Patch Antenna Design Demonstration 53
5.3.1 Design Goal 53
5.3.2 Design Region 53
5.3.3 Implementation 53
5.3.4 Preliminary Results 56
5.3.4.1 4×4 Pixelated Design 56
5.3.4.2 18×18 Pixelated Design 58
5.4 Discussion 62
Chapter 6 Conclusion 65
6.1 Summary 65
6.2 Future Directions 66
6.2.1 Generative Model 66
6.2.2 Reinforcement Learning 67
6.2.3 Physics-Informed Neural Networks 68
6.2.4 Machine Learning with Hard Constraints 68
6.3 Contributions 69
References 71
Appendix A Recurrent Neural Network with Gated Recurrent Unit 79
Appendix B Tab Transformer 81
Appendix C- Adaptive Moment Estimation 83
-
dc.language.isoen-
dc.subject天線設計自動化zh_TW
dc.subject人工智慧zh_TW
dc.subject機器學習zh_TW
dc.subject拓樸優化zh_TW
dc.subjectArtificial Intelligenceen
dc.subjectMachine Learningen
dc.subjectAntenna Design Automationen
dc.subjectTopology Optimizationen
dc.title天線設計自動化方法:機器學習與最佳化研究zh_TW
dc.titleMethodologies for Antenna Design Automation: A Study of Machine Learning and Optimizationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee馬自莊;黃定彝;歐陽良昱zh_TW
dc.contributor.oralexamcommitteeTzyh-Ghuang Ma;Ting-Yi Huang;Liang-Yu Ou Yangen
dc.subject.keyword天線設計自動化,人工智慧,機器學習,拓樸優化,zh_TW
dc.subject.keywordAntenna Design Automation,Artificial Intelligence,Machine Learning,Topology Optimization,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202501972-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-08-02-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf16.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved