Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98292Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳明汝 | zh_TW |
| dc.contributor.advisor | Ming-Ju Chen | en |
| dc.contributor.author | 洪立洋 | zh_TW |
| dc.contributor.author | Li-Yang Hung | en |
| dc.date.accessioned | 2025-08-01T16:06:06Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 凌佳琪。2024。藉由共培養方法探討克弗爾微生物的交互作用與克弗爾粒之形成。國立臺灣大學動物科學技術學研究所碩士論文。
Adiloğlu, A. K., N. Gönülateş, M. Işler and A. Senol. 2013. The effect of kefir consumption on human immune system: a cytokine study. Mikrobiyol Bul. 47: 273-281. doi: 10.5578/mb.4709 Arslan, S. 2015. A review: chemical, microbiological and nutritional characteristics of kefir. CyTA J. Food. 13: 340-345. doi: 10.1080/19476337.2014.981588 Barukčić, I., L. Gracin, A. R. Jambrak and R. Božanić. 2017. Comparison of chemical, rheological and sensory properties of kefir produced by kefir grains and commercial kefir starter. Mljekarstvo. 67: 169-176. doi: 10.15567/mljekarstvo.2017.0301 Beshkova, D. M., E. D. Simova, Z. I. Simov, G. I. Frengova and Z. N. Spasov. 2002. Pure cultures for making kefir. Food Microbiol. 19: 537-544. doi: 10.1006/fmic.2002.0499 Bintsis, T. and P. Papademas. 2022. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation. 8: 679. doi: 10.3390/fermentation8120679 Blasche, S., Y. Kim, R. Mars, E. Kafkia, M. Maansson, D. Machado, B. Teusink, J. Nielsen, V. Benes, R. Neves, U. Sauer and K. R. Patil. 2019. Emergence of stable coexistence in a complex microbial community through metabolic cooperation and spatio-temporal niche partitioning. bioRxiv. 541870. doi: 10.1101/541870 Blasche, S., Y. Kim, R. Mars, D. Machado, M. Maansson, E. Kafkia, A. Milanese, G. Zeller, B. Teusink, J. Nielsen, V. Benes, R. Neves, U. Sauer and K. R. Patil. 2021. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6: 196-208. doi: 10.1038/s41564-020-00816-5 Bourrie, B. C. T., N. Diether, R. P. Dias, S. L. Nam, A. P. Mata, A. J. Forgie, G. Guar, J. J. Harynuk, M. Gänzle, P. D. Cotter and B. P. Willing. 2023. Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Res. Int. 173: 113467. doi: 10.1016/j.foodres.2023.113467 Cheirsilp, B., H. Shimizu and S. Shioya. 2003. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J. Biotechnol. 100: 43-53. doi: 10.1016/s0168-1656(02)00228-6 Cheirsilp, B. and S. Radchabut. 2011. Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts. N. Biotechnol. 28: 574-580. doi: 10.1016/j.nbt.2011.01.009 Chen, H. C., S. Y. Wang and M. J. Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25: 492-501. doi: 10.1016/j.fm.2008.01.003 Chen, T. H., S. Y. Wang, K. N. Chen, J. R. Liu and M. J. Chen. 2009. Microbiological and chemical properties of kefir manufactured by entrapped microorganisms isolated from kefir grains. J. Dairy Sci. 92: 3002-3013. doi: 10.3168/jds.2008-1669 Codex Alimentarius. 2003. Standard for fermented milks (CXS 243-2003). World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO). Rome, Italy. Gentry, B., P. Cazón and K. O’Brien. 2023. A comprehensive review of the production, beneficial properties, and applications of kefiran, the kefir grain exopolysaccharide. Int. Dairy J. 144: 105691. doi: 10.1016/j.idairyj.2023.105691 Grønnevik, H., M. Falstad and J. A. Narvhus. 2011. Microbiological and chemical properties of Norwegian kefir during storage. Int. Dairy J. 21: 601-606. doi: 10.1016/j.idairyj.2011.01.001. Gul, O., M. Mortas, I. Atalar, M. Dervisoglu and T. Kahyaoglu. 2015. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 98: 1517-1525. doi: 10.3168/jds.2014-8755 Guzel-Seydim, Z., A. C. Seydim and A. K. Greene. 2000. Organic Acids and Volatile Flavor Components Evolved During Refrigerated Storage of Kefir. J. Dairy Sci. 83: 275-277. doi: 10.3168/jds.S0022-0302(00)74874-0 Guzel-Seydim, Z. B., Ç. Gökırmaklı and A. K. Greene. 2021. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends. Food Sci. Technol. 113: 42-53. doi: 10.1016/j.tifs.2021.04.041 Hertzler, S. R. and S. M. Clancy. 2003. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 103: 582-587. doi: 10.1053/jada.2003.50111 Huseini, H. F., G. Rahimzadeh, M. R. Fazeli, M. Mehrazma and M. Salehi. 2012. Evaluation of wound healing activities of kefir products. Burns. 38: 719-723. doi: 10.1016/j.burns.2011.12.005 International Organization for Standardization. 2012. Fermented milks-Determination of titratable acidity-Potentiometric method (ISO/TS 11869:2012). ISO Central Secretariat. Geneva, Switzerland. Irigoyen, A., I. Arana, M. Casteilla, P. Torre and F. C. Ibáñez. 2005. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem. 90: 613-620. doi: 10.1016/j.foodchem.2004.04.021 Leite, A. M. O., D. C. A. Leite, E. M. Del Aguila, T. S. Alvares, R. S. Peixoto, M. A. L. Miguel, J. T. Silva and V. M. F. Paschoalin. 2013. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. J. Dairy Sci. 96: 4149-4159. doi: 10.3168/jds.2012-6263 Micheli, L., D. Uccelletti, C. Palleschi and V. Crescenzi. 1999. Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl. Microbiol. Biotechnol. 53: 69-74. doi: 10.1007/s002530051616 Michielsen, S., G. T. Vercelli, O. X. Cordero and H. Bachmann. 2024. Spatially structured microbial consortia and their role in food fermentations. Curr. Opin. Biotechnol. 87: 103102. doi: 10.1016/j.copbio.2024.103102 Nambou, K., C. Gao, F. Zhou, B. Guo, L. Ai and Z. J. Wu. 2014. A novel approach of direct formulation of defined starter cultures for different kefir-like beverage production. Int. Dairy J. 34: 237-246. doi: 10.1016/j.idairyj.2013.03.012 Nejati, F., S. Junne and P. Neubauer. 2020. A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms. 8: 192. doi: 10.3390/microorganisms8020192 Nejati, F., C. C. Capitain, J. L. Krause, G. U. Kang, R. Riedel, H. D. Chang, J. Kurreck, S. Junne, P. Weller and P. Neubauer. 2022. Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They? Appl. Sci. 12: 3838. doi: 10.3390/app12083838 Ng, K. S., S. Y. Wang and M. J. Chen. 2020. A novel immobilized cell system involving Taiwanese kefir microorganisms and sugar cane pieces for fermented milk production. J. Dairy Sci. 103: 141-149. doi: 10.3168/jds.2019-16763 Nielsen, B., G. C. Gürakan and G. Ünlü. 2014. Kefir: A Multifaceted Fermented Dairy Product. Probiotics Antimicrob. Proteins. 6: 123-135. doi: 10.1007/s12602-014-9168-0 Powell, J. E. 2006. Bacteriocins and bacteriocin producers present in kefir and kefir grains. Master's thesis, University of Stellenbosch. Rosa, D. D., M. M. S. Dias, Ł. M. Grześkowiak, S. A. Reis, L. L. Conceição and M. C. G. Peluzio. 2017. Milk kefir: nutritional, microbiological and health benefits. Nutr. Res. Rev. 30: 82-96. doi: 10.1017/S0954422416000275 Saleem, K., A. Ikram, F. Saeed, M. Afzaal, H. Ateeq, M. Hussain, A. Raza, A. Rasheed, A. Asghar and M. A. Shah. 2023. Nutritional and functional properties of kefir: review. Int. J. Food Prop. 26: 3261-3274. doi: 10.1080/10942912.2023.2280437 Saygili, D., D. Döner, F. İçier and C. Karagözlü. 2022. Rheological properties and microbiological characteristics of kefir produced from different milk types. Food Sci. Technol. 42. doi: 10.1590/fst.32520 Szkolnicka, K., I. Dmytrów, A. Mituniewicz-Małek and E. Bogusławska-Wąs. 2024. Quality Assessment of Organic Kefirs Made with Kefir Grains and Freeze-Dried Starter Cultures. Appl. Sci. 14: 11746. doi: 10.3390/app142411746 Tanizawa, Y., H. Kobayashi, E. Kamimura, M. Sakamoto, M. Ohkuma, Y. Nakamura, M. Arita and M. Tohno. 2017. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri. Biosci. Microbiota Food Health. 36: 129-134. doi: 10.12938/bmfh.16-026 Vénica, C. I., M. C. Perotti and C. V. Bergamini. 2014. Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Sci. Technol. 94: 561-580. doi: 10.1007/s13594-014-0180-7 Wang, S. Y., H. C. Chen, J. R. Liu, Y. C. Lin and M. J. Chen. 2008. Identification of yeasts and evaluation of their distribution in Taiwanese Kefir and Viili starters. J. Dairy Sci. 91: 3798-3805. doi: 10.3168/jds.2007-0468 Wang, S. Y., K. N. Chen, Y. M. Lo, M. L. Chiang, H. C. Chen, J. R. Liu and M. J. Chen. 2012. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 32: 274-285. doi: 10.1016/j.fm.2012.07.001 Wang, Y., J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang and W. Geng. 2021. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 9: 612285. doi: 10.3389/fbioe.2021.612285 Wang. X., J. Xiao, Y. Jia, Y. Pan and Y. Wang. 2018. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon. 4: e00649. doi: 10.3389/fbioe.2021.612285 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98292 | - |
| dc.description.abstract | 克弗爾是一種源自於高加索、東歐與巴爾幹等地區的傳統發酵乳,近年來,克弗爾的機能性使其逐漸在世界各地受到歡迎,但由於克弗爾粒在結構上與微生物組成上的特性,使得克弗爾在商業上的生產面臨許多難題。因此,本實驗將使用從克弗爾粒中分離出來的純菌株進行發酵乳製作,以期達到簡化克弗爾生產過程,以及保存傳統克弗爾的風味與質地等目的。
實驗將分為兩個部分。第一部分為克弗爾的製作,分為使用克弗爾粒的傳統組以及使用克弗爾粒分離之純菌株的純菌株組 (Lactobacillus kefiranofaciens M1、Lb. kefiri B15、Lactococcus. lactis MK4、Kluyveromyces marxianus E3)。冷凍的克弗爾粒會以10% (w/v) 的比例加入牛乳中,於20℃發酵20小時,並重複三次,使其恢復活性,待活性恢復後,每週繼代一次即可。四種純菌株會各自於培養基中活化三次,並接種於牛乳中使其適應牛乳的環境,之後根據它們在克弗爾粒中的數量加入牛乳中混合,於20℃發酵48小時。發酵後,樣品皆分裝並保存於4℃,待後續分析。第二部分為物理化性質分析。兩種發酵乳將會保存21天,並每7天取樣進行分析。分析項目包含,pH值、滴定酸度、質地、黏度、總菌數、qPCR (quantitative polymerase chain reaction)、有機酸含量與消費者喜好性試驗。實驗結果顯示,純菌株組的pH值 (4.21-4.39) 顯著高於傳統組 (4.04-4.14),並且純菌株組在保存期間有逐漸下降的現象。滴定酸度於傳統組 (1.13%-1.16%) 顯著高於純菌株組 (0.86%-1.07%),在兩組中皆會隨著保存期間增加而上升。質地分析的結果顯示,純菌株組在堅實度、稠度、內聚性與內聚功皆高於傳統組,而兩組間沒有顯著差異,四個項目也都會在保存期間下降。黏度在純菌株組中顯著較高,且會在保存期間下降,而傳統組則有上下起伏的現象。乳酸菌數量在純菌株組中顯著高於傳統組,其數量約維持在9 log CFU/mL,而傳統組的數量則在第7與14天之間減少了1.17 log CFU/mL,同時酵母菌增加了0.98 log CFU/mL。酵母菌突然的增加可能導致乳酸菌的減少。以qPCR定量四株菌的數量後發現,傳統組中以Lb. kefiranofaciens為優勢菌種,而純菌株組則為Lc. lactis。除了傳統組的K. marxianus之外,其他菌株皆會在保存期間內減少。有機酸分析的結果指出,傳統組除了檸檬酸之外,乳酸、甲酸、乙酸與丁酸含量皆高於純菌株組,其含量除了傳統組的檸檬酸之外,在保存期間皆無顯著變化。酒精含量在兩組間無顯著差異,而在保存期間皆有顯著的增加。消費者喜好性試驗指出,純菌株組第0天的分數最高,不過仍低於傳統組。其中影響接受度最主要的因素為口感與風味,有受試者指出純菌株組的第14與21天有明顯的酒味,而第14天的因為有細小的凝乳塊,使其口感得分最低。綜上所述,以克弗爾粒分離的四株純菌株確實可以進行發酵,並製成發酵乳,達到簡化生產過程、免去使用克弗爾粒的目的。純菌株組在微生物數量方面與傳統組不同,未來也可針對其機能性做更深入的探討,以評估其機能性是否相似於傳統克弗爾或更好。不過純菌株克弗爾的發酵時間較長,並且在保存期間會產生過於明顯的酒味,因此後續可針對菌株的數量做調整,以縮短發酵時間與提升風味。此外,不同批次間發酵乳的品質穩定性與一致性也須做更進一步的試驗,以使其更加適合用於商業生產。 | zh_TW |
| dc.description.abstract | Milk kefir, an ancient fermented beverage, originates from the Caucasus Mountains, Eastern Europe, and the Balkans, with a history dating back centuries. In recent years, kefir has gained global popularity due to its health-promoting properties, resulting in increased market availability. However, the unique biological structure and variability of kefir grains pose challenges for industrial-scale production. Therefore, this study aimed to simplify the production process and preserve the traditional sensory qualities of kefir by using a defined mixture of kefir-isolated microorganisms.
This study consists of two main parts. The first part focused on kefir production. Traditional kefir was made with kefir grains, and pure culture kefir was made with four dominant kefir-derived strains (Lactobacillus kefiranofaciens M1, Lactobacillus kefiri B15, Lactococcus lactis MK4, and Kluyveromyces marxianus E3). Frozen kefir grains were activated by three successive fermentations (10% w/v in fresh milk at 20 °C for 20 hours), followed by weekly subculturing. For pure culture kefir, each strain was individually activated in broth, then combined based on their proportional abundance in kefir grains and inoculated into milk, followed by fermentation at 20 °C for 48 hours. All samples were stored at 4 °C for subsequent analysis. The second part evaluated the physicochemical and microbial characteristics of both kefir types every seven days over a 21-day storage period. Parameters assessed included pH, titratable acidity, total microbial counts, qPCR (quantitative polymerase chain reaction)-based microbial quantification, texture profile, viscosity, organic acid content, and consumer preference. Results showed that the pH of pure culture kefir (4.21-4.39) was significantly higher than that of traditional kefir (4.04-4.14), and declined gradually during storage. Titratable acidity was consistently higher in traditional kefir and increased slowly over time in both groups. Texture profile analysis revealed that firmness, consistency, cohesiveness, and work of cohesion were higher in pure culture kefir, though differences were not statistically significant. All texture attributes declined during storage. Viscosity was significantly higher in the pure culture group, but also decreased over time. LAB counts were significantly different between the groups; pure culture kefir maintained ~9 log CFU/mL, whereas traditional kefir experienced a ~1 log reduction from day 7 to 14. Yeast counts increased by ~1 log in both groups during storage, potentially contributing to the LAB decline in traditional kefir. Quantitative-PCR (qPCR) analysis indicated that Lb. kefiranofaciens dominated in traditional kefir, while Lc. lactis was most abundant in pure culture kefir. All strains, except K. marxianus, declined during storage in both groups. The organic acid assay indicated that except for citric acid, the contents of lactic acid, formic acid, acetic acid and butyric acid are higher in traditional group than pure culture group. The concentrations for organic acids had no significant difference during storage except for citric acid in traditional group. For ethanol content, there were no significant differences between two groups, but the concentration increased significantly during storage. The consumer preference test revealed that the pure culture group at day 0 had the highest score, but still lower than traditional group. According to the results, the main factors that affect the acceptance were texture and flavor. Some testers reported that there was distinct alcohol taste in pure culture group at day 14 and 21. Furthermore, there were small curds presence in pure culture group at day 14, hence it got the lowest score. In conclusion, kefir can be successfully produced using a simplified four-strain system. However, batch-to-batch consistency and stability remain challenges. Further optimization of microbial ratios and inoculation methods is needed for industrial scalability, as well as for reducing fermentation time and improving the flavor and texture during storage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:06:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:06:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iv 目次 vi 圖次 viii 表次 ix 壹、文獻探討 1 一、克弗爾(kefir) 1 (一)克弗爾的製作 1 (二)克弗爾對人體健康的益處 2 (三)克弗爾製作上遭遇的難題 4 二、克弗爾粒 4 (一)克弗爾粒的微生物組成 6 (二)克弗爾粒中微生物間的交互作用 12 (三)克弗爾粒的形成 13 三、以純菌株製作克弗爾的可能性 21 貳、研究動機 26 參、材料與方法 27 第一節:克弗爾粒與菌株之活化與發酵乳之製作 27 一、試驗設計 27 二、克弗爾粒與菌株的活化 28 三、發酵乳製作 29 第二節:發酵乳之物理化特性分析 31 一、試驗設計 31 二、發酵乳之物理化特性分析 32 肆、結果 40 第一節:克弗爾粒與菌株之活化與發酵乳之製作 40 第二節:發酵乳之物理化特性分析 45 一、發酵乳之pH值與滴定酸度 45 二、發酵乳之質地變化 48 三、發酵乳中微生物數量之變化 55 四、即時聚合酶鏈鎖反應 (qPCR) 定量發酵乳中各菌株之數量 58 五、發酵乳中有機酸與酒精含量 63 六、消費者喜好性試驗 69 伍、討論 73 第一節:克弗爾粒與菌株之活化與發酵乳之製作 73 第二節:發酵乳之物理化特性分析 74 一、pH值與滴定酸度 74 二、質地分析與黏度 75 三、微生物數量 75 四、發酵乳中有機酸與酒精含量 76 五、消費者喜好性試驗 77 陸、結論 80 柒、參考文獻 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 克弗爾 | zh_TW |
| dc.subject | 發酵乳 | zh_TW |
| dc.subject | 純菌株 | zh_TW |
| dc.subject | 乳酸菌 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | pure culture | en |
| dc.subject | kefir | en |
| dc.subject | yeast | en |
| dc.subject | lactic acid bacteria | en |
| dc.subject | fermented milk | en |
| dc.title | 評估以克弗爾分離菌株製作克弗爾對其理化、微生物及感官性質的影響 | zh_TW |
| dc.title | Assessment of the impact of milk kefir producing by isolated kefir starters on its physicochemical, microbial and sensory characteristics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王聖耀;陳彥伯;陳詠宗;郭卿雲 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Yao Wang;Yen-Po Chen;Yung-Tsung Chen;Ching-Yun Kou | en |
| dc.subject.keyword | 克弗爾,發酵乳,純菌株,乳酸菌,酵母菌, | zh_TW |
| dc.subject.keyword | kefir,fermented milk,pure culture,lactic acid bacteria,yeast, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202502025 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| Appears in Collections: | 動物科學技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 5.8 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
