請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9827
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許晃雄(Huang-Hsiung Hsu) | |
dc.contributor.author | Wan-Ling Tseng | en |
dc.contributor.author | 曾琬鈴 | zh_TW |
dc.date.accessioned | 2021-05-20T20:43:46Z | - |
dc.date.available | 2008-07-23 | |
dc.date.available | 2021-05-20T20:43:46Z | - |
dc.date.copyright | 2008-07-23 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-17 | |
dc.identifier.citation | Ambrizzi, T., B. J. Hoskins, H.-H, Hsu, 1995: Rossby Wave Propagation and teleconnection Patterns in the Austral Winter. J. Atmos. Sci., 52, 3661–3672.
Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173–265. Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388. Charnock, M., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640. Chou, C., J. –Y. Tu, and J. –Y. Yu, 2003: Interannual Variability of the Western North Pacific Summer Monsoon: Difference between ENSO and Non-ENSO Years. J. Climate, 16, 2275-2287. Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteorol. Soc., 129, 157-178. Feng, S., and Q. Hu, 2004: Variations in the Teleconnection of ENSO and Summer Rainfall in Northern China: A Role of the Indian Summer Monsoon. J. Climate, 17, 4871-4881. Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155. Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams,1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474. Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831–841. Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46, 1–26. Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003:Mechanisms for ENSO phase change in a coupled GCM. J.Climate, 16, 1141–1158. Hagemann, S., and L. Dümenil, 1998: A parameterization of the lateral waterflow for the global scale. Climate Dyn., 14, 17–31. ——, and L. Dümenil-Gates, 2003: An improved sub grid runoff parameterization scheme for climate models. Climate Dyn., 21, 349–359. Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. oceanogr., 9, 815–846. Hsu, H. –H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 206610.1029/2003GL017909. Hsu, H.-H., and Lin, S.-M., 2007: Asymmetry of the tripole rainfall pattern during East Asian summer. J. Clim., 17, 4443-4458. Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asia summer monsoon. J. Meteorol. Soc. Japan, 70, 243-256. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo J, Latif M, Marotzke J, Mikolajewicz U,Roeckner E, 2006 Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. J.Climate, 19, 3952. Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan (PJ) teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009-2030. Lau, K.-M., 1992: The East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteorol. Soc. Japan, 70, 211-241. Lau, K.-M., and H. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997-98 El Nino. J. Clim., 14, 1294-1308. Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Clim., 13, 2461-2482. Liu, X., W. Li and G. Wu, 2002: Interannual variation of the diabatic heating over the Tibetan plateau and the Northern Hemispheric circulation in summer. Acta Meteorol. Sinica, 60(3), 267-277. Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202. Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344–2360. Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Rep. Note 11, 91 pp. Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max- Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91–127. Morcrette, J.-J., L. Smith, and Y. Fouquart, 1986: Pressure and temperature ependence of the absorption in longwave radiation parameterizations. Beitr. Phys. Atmos., 59, 455–469. Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow, J. Atmos. Sci., 54, 435–455. Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall-El Niño relationship. J. Clim., 7, 1750-1771. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteorol. Soc. Japan, 65, 373-390. Nitta, T., and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteorol. Soc. Japan, 74, 425-445. Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451. Redi, M. H., 1982: Oceanic isopycanal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158. Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp. Roullet, G., and G. Madec, 2000: Salt conservation, free surfaceand varying volume: A new formulation for ocean GCMs. J. Geophys. Res., 105, 23 927–23 942. Shen, S., and K.-M. Lau, 1992: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperature. J. Meteorol. Soc. Japan, 73, 105-124. Simmons, A.J., J. M. Wallace, and G.. W. Branstator, 1983: Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci., 40, 1363–1392. Tian, S.-F., and T. Yasunari, 1992: Time and space structure of interannual variations in summer rainfall over China. J. Meteorol. Soc. Japan, 70, 585-596. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800. Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, 85 pp. Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711 Weng, H., K.-M. Lau, and Y. Xue, 1999:Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteorol. Soc. Japan, 77, 845-857. Wolff, J. O., E. Maier-Reimer, and S. Legutke, 1997: The Hamburg Ocean Primitive Equation Model HOPE. Tech. Rep. 13, German Climate Computer Center (DKRZ), Hamburg, Germany, 98 pp. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9827 | - |
dc.description.abstract | 東亞地區夏季的年際降水變化,存在一個三極結構(tripole pattern):當華中、日本一帶多雨時,華南及華北地區少雨,反之亦然。此三極結構為東亞地區夏季降水的年際變異的第一個EOF。本研究因此以其PC為指標,來定義三極結構的強弱。Hsu and Lin(2007)提到,此三極結構的正相位與負相位是不對稱的,其能量來源可能受南邊菲律賓海附近的異常加熱(Nitta 1987),也可能受歐亞大陸、青藏高原的非絕熱加熱影響(Enomoto et al. 2003),而此現象本身極可能是存在於大氣本質中的現象(intrinsic mode),經由外界的擾動造成此現象的出現或幅度增強。
本篇研究運用模式資料驗證上述假說,所採用的模式分別為SINTEX-F與ECHAM,將模式資料分成大氣與海洋耦合的模式,以此模式的海溫做為未耦合模式的邊界條件,再分為年際變化與氣候值海溫的驅動模式。 將有大氣與海洋耦合作用的模式資料與觀測資料對照,可發現模式資料(SINTEX-F、ECHAM)在EOF1可清楚模擬出三極結構,但模式資料看不出觀測資料中正負相位之不對稱性。在低層表現較高層模擬佳,有耦合的資料表現上勝於沒有耦合,有年際變化勝於氣候值。因此可看出海洋對大氣的交互作用在三極結構上有一定程度的重要性。 在海氣耦合模式中,海溫與降雨呈現負相關,未耦合模式中,海溫與降雨則為正相關,顯見兩種模式中的對流降雨機制並不相同。推測在有海洋的模式中海溫是海氣交互作用下的產物。此海溫在沒有海洋的模式中,卻成為直接影響降雨的重要因子,這個現象可能是由大氣主導而影響海洋。 | zh_TW |
dc.description.abstract | There is a tripole rainfall pattern in East Asia during the northern summer. The positive (negative) phase of the pattern is characterized by more (less) rainfall in central eastern China, Japan, and South Korea, and less (more) rainfall in northern and southern China. This rainfall pattern is the first EOF mode in East Asia interannual variability. Hsu and Lin (2003) pointed the positive and negative phases are asymmetric. It could be originated in the heating anomalies in the tropical Western Pacific, which in turn triggers a wave-like pattern emanating northward toward extra-tropical East Asia (Nitta 1987). It also could be originated in the heating over the eastern Tibetan Plateau, which induce the eastward-propagating wave-like structure (Enomoto et al. 2003). It is suggested that the tripole pattern is a result of the amplification of an intrinsic dynamic mode that can be triggered by various factors despite of their different origins.
This study uses numerical simulation data (SINTEX-F, ECHAM) to identify the hypothesis. There are two types of simulations in this experiment. The first type coupled with atmosphere and ocean model. The second type is AGCM foreced by simulated SST, and AGCM forced by the simulated climatological SST. SINTEX and ECHAM model could produce realistically the tripole rainfall pattern, which is the dominant pattern in East Asia. But there is no significant asymmetric phenomenon in model simulation data. The simulation of the N-S wave, which is affected by tropical heating, is better than the simulation of the E-W wave, which is affected by the wave activity in the Eurasian continent. Un-coupled simulation produces the tripole pattern, but not as distinct as coupled model. The simulation forced by the simulated interannual monthly SST is better than the one forced by the simulated climatological monthly SST. Therefore the Ocean plays an important role in exciting the tripole pattern. The relationship between SST and precipitation in coupled and un-coupled model is different. In coupled model, they had negative correlation; in un-coupled model, they had positive correlation. It maybe SST is the product after air-sea interaction in coupled model, but SST effects directly the rainfall in un-coupled model. Atmospheric effect dominates this structure. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:43:46Z (GMT). No. of bitstreams: 1 ntu-97-R95229001-1.pdf: 5651618 bytes, checksum: a680835bce361e7c566c0625769411cd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 圖表說明 VII 前言 1 1.1 三極結構特徵與機制概述 1 1.2 研究動機與論文架構 3 第二章 研究資料與方法 5 2.1 使用資料 5 2.1.1 觀測資料 5 2.1.2 模式資料 5 2.2 資料處理 7 2.3 分析方法 7 2.3.1 經驗正交函數 7 2.3.2 乾濕年合成 8 2.3.3 Student-t 顯著性檢定 9 第三章 海洋對三極結構之影響 11 3.1 觀測與海氣耦合模式之比較 11 3.1.1 三極結構之定義 11 3.1.2 觀測與模式EOF之比較 12 3.1.3觀測與模式環流場之比較 12 3.2 海氣耦合與未耦合模式之比較 14 3.2.1 SINTEX-F之比較 14 3.2.2 ECHAM之比較 15 第四章 海洋存在之重要性討論 16 4.1 模式機制 16 4.1.1 模式氣候場 16 4.1.2 模式降雨與海溫之關係 17 4.1.3 三極結構存在之成因探討 17 4.2 三極結構在海氣耦合與未耦合模式之比較 18 4.2.1 基本環流場討論 18 4.2.2 模式降雨機制之演繹 19 4.2.3 海氣耦合與未耦合模式之差異討論 21 第五章 綜合討論與結論 24 5.1 結果與討論 24 5.1.1 觀測與模式之三極結構比較 24 5.1.2 海洋對三極結構之重要性 24 5.1.3海洋對三極結構之影響性 25 5.2 總結與未來展望 26 參考文獻 27 附錄-模式簡介 33 SINTEX-F 33 ECHAM5/MPI-OM 34 附圖 37 | |
dc.language.iso | zh-TW | |
dc.title | 東亞地區夏季降水三極結構之模擬研究 | zh_TW |
dc.title | Numerical Simulation of the Tripole pattern During East Asian Summer | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊秉潔(Ben-Jei Tsuang),陳正達(Cheng-Ta Chen),柯文雄(Wen-Shung Kau),隋中興(Chung-Hsiung Sui) | |
dc.subject.keyword | 三極結構, | zh_TW |
dc.subject.keyword | tripole pattern, | en |
dc.relation.page | 66 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-07-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf | 5.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。