請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98274完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 張宸溥 | zh_TW |
| dc.contributor.author | Chen-Pu Chang | en |
| dc.date.accessioned | 2025-07-31T16:11:47Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] O. L. Bo and E. Nyfors, "Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow," J. Non-Cryst. Solids, vol. 305, no. 1–3, pp. 345–353, Jul. 2002.
[2] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors J., vol. 14, no. 5, pp. 1345–1351, 2014. [3] M. S. Boybay and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., vol. 61, no. 11, pp. 3039–3046, 2012. [4] K. Saeed, A. C. Guyette, I. C. Hunter, and R. D. Pollard, "Microstrip resonator technique for measuring dielectric permittivity of liquid solvents and for solution sensing," presented at the IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007. [5] K. K. Joshi and R. D. Pollard, "Sensitivity analysis and experimental investigation of microstrip resonator technique for the in-process moisture/permittivity measurement of petrochemicals and emulsions of crude oil and water," presented at the IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006. [6] J. Krupka, "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., vol. 17, no. 6, pp. R55–R70, 2006. [7] M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity," IEEE Sensors J., vol. 15, no. 12, pp. 7181–7189, 2015. [8] M. H. Zarifi, T. Thundat, and M. Daneshmand, "High resolution microwave microstrip resonator for sensing applications," Sens. Actuators A Phys., vol. 233, pp. 224–230, 2015. [9] K. Staszek, I. Piekarz, J. Sorocki, S. Koryciak, K. Wincza, and S. Gruszczynski, "Low-cost microwave vector system for liquid properties monitoring," IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1665–1674, 2018. [10] A. Ebrahimi, J. Scott, and K. Ghorbani, "Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement," IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269–4277, 2019. [11] Y. Khanna and Y. K. Awasthi, "Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator," J. Electron. Mater., vol. 49, no. 1, pp. 385–394, 2019. [12] X. Zhang, C. Ruan, T. U. Haq, and K. Chen, "High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator," Sensors, vol. 19, no. 4, p. 787, Feb. 2019. [13] H. Hao, D. Wang, Z. Wang, B. Yin, and W. Ruan, "Design of a high sensitivity microwave sensor for liquid dielectric constant measurement," Sensors, vol. 20, no. 19, p. 5598, Sep. 2020. [14] T. Haq, C. Ruan, X. Zhang, S. Ullah, A. K. Fahad, and W. He, "Extremely sensitive microwave sensor for evaluation of dielectric characteristics of low-permittivity materials," Sensors, vol. 20, no. 7, p. 1916, Mar. 2020. [15] C. Wang et al., "High-accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor-based planar microwave sensor," IEEE Sensors J., vol. 21, no. 5, pp. 6083–6093, 2021. [16] L. Ali, C. Wang, F.-Y. Meng, K. K. Adhikari, and Z.-Q. Gao, "Interdigitated planar microwave sensor for characterizing single/multilayers magnetodielectric material," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 619–622, 2022. [17] A. Ebrahimi and K. Ghorbani, "High-sensitivity detection of solid and liquid dielectrics using a branch line coupler sensor," IEEE Trans. Microw. Theory Techn., vol. 71, no. 12, pp. 5233–5245, 2023. [18] W.-J. Wu and W.-S. Zhao, "A microwave sensor system based on oscillating technique for characterizing complex permittivity of liquid samples," IEEE Sensors J., vol. 23, no. 21, pp. 25958–25970, 2023. [19] E. Nyfor, "Industrial microwave sensors—A review," Subsurf. Sens. Technol. Appl., vol. 1, no. 1, pp. 23–43, Jan. 2000. [20] A. P. Viswanathan, R. Moolat, M. Mani, V. A. Shameena, and M. Pezholil, "A simple electrically small microwave sensor based on complementary asymmetric single split resonator for dielectric characterization of solids and liquids," Int. J. RF Microw. Comput.-Aided Eng., vol. 30, no. 12, pp. 1–13, Dec. 2020. [21] 嚴慶隆, "非平面微波生物感測器應用於葡萄糖溶液即時監測," 碩士論文, 國立臺灣大學機械工程學研究所, 2023. [22] R. Igreja and C. J. Dias, "Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure," Sens. Actuators A Phys., vol. 112, no. 2–3, pp. 291–301, 2004. [23] X. Bao et al., "Modeling of coplanar interdigital capacitor for microwave microfluidic application," IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2674–2683, 2019. [24] J. Bao, G. Maenhout, T. Markovic, I. Ocket, and B. Nauwelaers, "A microwave platform for reliable and instant interconnecting combined with microwave-microfluidic interdigital capacitor chips for sensing applications," Sensors, vol. 20, no. 6, p. 1687, Mar. 2020. [25] S. N. Prabhu et al., "Interdigital sensors: Progress over the last two decades," presented at the SBMicro Conf., 2021. [26] L. Ali et al., "Design and optimization of interdigitated microwave sensor for multidimensional sensitive characterization of solid materials," IEEE Sensors J., vol. 21, no. 20, pp. 22814–22822, 2021. [27] S. Kiani, P. Rezaei, and M. Fakhr, "An overview of interdigitated microwave resonance sensors for liquid samples permittivity detection," in Handbook of Microwave Sensor Design, 1st ed. Boca Raton, FL, USA: CRC Press, 2021, pp. 153–197. [28] L. Zhu and K. Wu, "Accurate circuit model of interdigital capacitor and its application to design of new quasi-lumped elements," IEEE Trans. Microw. Theory Techn., vol. 48, no. 3, pp. 347–356, Mar. 2000. [29] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 280–282, 2004. [30] J. A. Dobrowolski, Microwave Network Design Using the Scattering Matrix. Englewood Cliffs, NJ: Artech House, 2010. [31] Y. Huang, G. Wen, and J. Li, "Compact microstrip triplexer based on twist-modified asymmetric split-ring resonators," Electron. Lett., vol. 50, no. 23, pp. 1712–1713, 2014. [32] T. Salpavaara et al., "Passive resonance sensor based method for monitoring particle suspensions," Sens. Actuators B Chem., vol. 219, pp. 324–330, 2015. [33] M. H. Zarifi, M. Fayaz, J. Goldthorp, M. Abdolrazzaghi, Z. Hashisho, and M. Daneshmand, "Microbead-assisted high resolution microwave planar ring resonator for organic-vapor sensing," Appl. Phys. Lett., vol. 106, no. 6, 2015. [34] S. Keshavarz, A. Abdipour, A. Mohammadi, and R. Keshavarz, “Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines,” AEU Int. J. Electron. Commun., vol. 111, Nov. 2019, Art. p. 152913. [35] S. Mohammadi, R. Narang, M. Mohammadi Ashani, H. Sadabadi, A. Sanati-Nezhad, and M. H. Zarifi, "Real-time monitoring of Escherichia coli concentration with planar microwave resonator sensor," Microw. Opt. Technol. Lett., vol. 61, no. 11, pp. 2534–2539, 2019. [36] L. Odabashyan et al., "Real-time noninvasive measurement of glucose concentration using a modified Hilbert shaped microwave sensor," Sensors, vol. 19, no. 24, Art. p. 5525, Dec. 2019. [37] A. M. Albishi, "A novel coupling mechanism for CSRRs as near-field dielectric sensors," Sensors, vol. 22, no. 9, Art. p. 3313, Apr. 2022. [38] W. Ye, D. W. Wang, J. Wang, G. Wang, and W. S. Zhao, "An improved split-ring resonator-based sensor for microfluidic applications," Sensors, vol. 22, no. 21, Art. p. 8534, Nov. 2022. [39] M. Alibakhshikenari, “Design of a planar sensor based on split-ring resonators for non-invasive permittivity measurement,” Sensors, vol. 23, no. 11, p. 5306, Jun. 2023. [40] M. H. Zarifi, O. Niksan, A. M. Gargari, and D. Kilani, "Planar microwave sensors based on coupled ring resonators and applications," in Coupled Structures for Microwave Sensing, Springer Nature Switzerland, 2024, pp. 341–374. [41] M. Abdolrazzaghi, M. H. Zarifi, M. Daneshmand, and C. F. A. Floquet, "Contactless asphaltene solid particle deposition monitoring using active microwave resonators," in Proc. IEEE SENSORS, Oct. 2016, pp. 1–3. [42] J. Bonache, M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 543–545, 2006. [43] V. Turgul and I. Kale, "Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing," Sens. Actuators A Phys., vol. 277, pp. 65–72, 2018. [44] S. Kiani, P. Rezaei, and M. Fakhr, "Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip," IEEE Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021. [45] E. Mansour, A. Allam, and A. B. Abdel-Rahman, "A novel approach to non-invasive blood glucose sensing based on a single-slot defected ground structure," Int. J. Microw. Wireless Technol., vol. 15, no. 1, pp. 32–40, 2022. [46] A. Kandwal, L. W. Y. Liu, M. J. Deen, R. Jasrotia, B. K. Kanaujia, and Z. Nie, "Electromagnetic wave sensors for noninvasive blood glucose monitoring: Review and recent developments," IEEE Trans. Instrum. Meas., vol. 72, pp. 1–15, 2023. [47] A. Ebrahimi, J. Scott, and K. Ghorbani, "Microwave reflective biosensor for glucose level detection in aqueous solutions," Sens. Actuators A Phys., vol. 301, p. 111662, 2020. [48] S. Kiani, P. Rezaei, and M. Navaei, "Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection," Measurement, vol. 160, p. 107805, 2020. [49] H. M. Marzouk, A. S. A. El-Hameed, A. Allam, and A. B. Abdel-Rahman, "Design of non-invasive glucose measurement sensor," presented at the 10th Int. Japan-Africa Conf. Electron., Commun. Comput. (JAC-ECC), 2022. [50] H. M. Marzouk, A. S. A. El-Hameed, A. Allam, R. K. Pokharel, and A. B. A. Rahman, "A new rectangular dielectric resonator sensor for glucose measurement: Design, modeling, and experimental validation," Int. J. Circuit Theory Appl., vol. 52, no. 6, pp. 3040–3051, 2023. [51] 岳士榕, "新型非接觸式環型共振生物感測器應用於癌細胞無標籤判定與生長監測," 碩士論文, 國立臺灣大學機械工程學研究所, 2022. [52] H. Torun, F. C. Top, G. Dundar, and A. D. Yalcinkaya, "A split-ring resonator-based microwave sensor for biosensing," in Proc. Int. Conf. Optical MEMS and Nanophotonics (OMN), 2014. [53] N. Meyne, C. Cammin, and A. F. Jacob, "Accuracy enhancement of a split-ring resonator liquid sensor using dielectric resonator coupling," presented at the 20th Int. Conf. Microw., Radar Wireless Commun. (MIKON), Jun. 2014. [54] G. Govind and M. J. Akhtar, "Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions," IEEE Sensors J., vol. 19, no. 24, pp. 11900–11907, 2019. [55] N. Afshari, S. M. Hashemi, and F. Geran, "Sensitivity evaluation of miniature microstrip line-based sensors using multiple sensing parameters for non-invasive blood glucose monitoring," IET Microw. Antennas Propag., vol. 17, no. 11, pp. 872–886, 2023. [56] E. Mezzomo and S. B. Ferreira, "Analysis of the discrepancies between simulation and measurement of an antenna," presented at the 23rd Microelectron. Students Forum (SForum), Rio de Janeiro, Brazil, Aug. 2023. [57] Z. Pu, R. Wang, J. Wu, H. Yu, K. Xu, and D. Li, "A flexible electrochemical glucose sensor with composite nanostructured surface of the working electrode," Sens. Actuators B Chem., vol. 230, pp. 801–809, 2016. [58] A. Shafaat et al., "Glucose-to-resistor transduction integrated into a radio-frequency antenna for chip-less and battery-less wireless sensing," ACS Sens., vol. 7, no. 4, pp. 1222–1234, Apr. 2022. [59] N. Y. Kim, K. K. Adhikari, R. Dhakal, Z. Chuluunbaatar, C. Wang, and E. S. Kim, "Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip," Sci. Rep., vol. 5, p. 7807, Jan. 2015. [60] A. Sharma et al., "Non-invasive, ultrasensitive detection of glucose in saliva using metal oxide transistors," Biosens. Bioelectron., vol. 237, p. 115448, Oct. 2023. [61] S.-L. Lu and A. M. Ferendeci, "Coupling parameters for a side-coupled ring resonator and a microstrip line," IEEE Trans. Microw. Theory Techn., vol. 44, no. 6, pp. 953–956, Jun. 1996. [62] R. Saha, S. K. Samanta, S. Ghorai, R. Pradhan, and D. Syam, "Study on resonant microstrip line coupled to a double-gap split ring resonator for various microwave filter applications," presented at the 2023 IEEE Wireless Antenna and Microwave Symp. (WAMS), 2023. [63] R. Mishra, A. Arora, S. Singh, and S. Bhattacharyya, "A split ring resonator (SRR) based metamaterial structure for bandstop filter applications," presented at the Proc. 2017 IEEE Appl. Electromagn. Conf. (AEMC), 2017. [64] M. Hesham and S. O. Abdellatif, "Compact bandpass filter based on split ring resonators," Proc. 2019 Int. Conf. Innovative Trends Comput. Eng. (ITCE), pp. 301–303, 2019. [65] B. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun, and A. D. Yalcinkaya, "Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose," IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 2, pp. 404–409, 2017. [66] M. Kirschning and R. H. Jansen, "Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines," IEEE Trans. Microw. Theory Techn., vol. 32, no. 1, pp. 83–90, Jan. 1984. [67] R. Garg and I. J. Bahl, "Characteristics of coupled microstriplines," IEEE Trans. Microw. Theory Techn., vol. 27, no. 7, pp. 700–705, Jul. 1979. [68] M. Kirschning and R. H. Jansen, "Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines corrections," IEEE Trans. Microw. Theory Techn., vol. 33, no. 3, p. 288, Mar. 1985. [69] G. I. Zysman and A. K. Johnson, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Trans. Microw. Theory Techn., vol. 17, pp. 753–759, Oct. 1969. [70] A. Sheikhi, A. Alipour, and A. Mir, "Design and fabrication of an ultra-wide stopband compact bandpass filter," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 2, pp. 265–269, 2020. [71] S. H. Kahkesh and A. Sheikhi, "A microstrip bandpass filter using coupled lines loaded by open stubs," Sci. Rep., vol. 14, no. 1, p. 26680, Nov. 2024. [72] J.-S. Park, J.-S. Yun and D. Ahn, “A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,” in IEEE Trans. Microwave Theory Tech., pp. 2037–2043, vol. 50, Sept. 2002. [73] C.-J. Chen, "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Trans. Microw. Theory Techn., vol. 66, no. 4, pp. 1921–1925, 2018. [74] C. Pedro, F. Si-Weng, and T. Kam-Weng, "Miniaturized parallel coupled-line bandpass filter with spurious-response suppression," IEEE Trans. Microw. Theory Techn., vol. 53, no. 5, pp. 1810–1816, 2005. [75] C.-H. Wu, C.-H. Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Trans. Microw. Theory Techn., vol. 55, no. 2, pp. 287–295, 2007. [76] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. Hoboken, NJ: Wiley, 2001. [77] A. M. Jones, J. F. Kelly, J. Tedeschi, and J. S. McCloy, "Design considerations for high-Q bandpass microwave oscillator sensors based upon resonant amplification," Appl. Phys. Lett., vol. 104, no. 25, 2014. [78] T. Jensen, V. Zhurbenko, V. Krozer, and P. Meincke, "Coupled transmission lines as impedance transformer," IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2957–2965, 2007. [79] W. Guo, X. Zhu, H. Liu, R. Yue, and S. Wang, "Effects of milk concentration and freshness on microwave dielectric properties," J. Food Eng., vol. 99, no. 3, pp. 344–350, 2010. [80] A. García, J. L. Torres, M. De Blas, A. De Francisco, and R. Illanes, "Dielectric characteristics of grape juice and wine," Biosyst. Eng., vol. 88, no. 3, pp. 343–349, 2004. [81] A. Sihvola and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Remote Sens., vol. 26, pp. 420–429, 1988. [82] K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, "Effective permittivity of mixtures numerical validation by the FDTD method," IEEE Trans. Geosci. Remote Sens., vol. 38, pp. 1303–1308, 2000. [83] M. Y. Sushko, "Effective permittivity of mixtures of anisotropic particles," J. Phys. D: Appl. Phys., vol. 42, no. 15, 2009. [84] V. Preault, R. Corcolle, L. Daniel, and L. Pichon, "Effective permittivity of shielding composite materials for microwave frequencies," IEEE Trans. Electromagn. Compat., vol. 55, no. 6, pp. 1178–1186, 2013. [85] R. P. Zou and A. B. Yu, "The packing of spheres in a cylindrical container the thickness effect," Chem. Eng. Sci., vol. 50, no. 9, pp. 1504–1507, 1995. [86] R. E. Pawinanto, J. Yunas, and A. M. Hashim, "Micropillar based active microfluidic mixer for the detection of glucose concentration," Microelectron. Eng., vol. 234, 2020. [87] O. Malyuskin, "Microplastic detection in soil and water using resonance microwave spectroscopy: A feasibility study," IEEE Sensors J., vol. 20, no. 24, pp. 14817–14826, 2020. [88] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ: Wiley, 2012. [89] R. Mongia, I. J. Bahl, P. Bhartia, and S. J. Hong, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 2007. [90] S. Soroush and E. Abdi, "A lowpass filter implementation with an ultra sharp transition band and extended stopband bandwidth based on even-mode and odd-mode analysis of lumped circuits," AEU - Int. J. Electron. Commun., vol. 149, 2022. [91] J. D. Baena et al., "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Techn., vol. 53, no. 4, pp. 1451–1461, 2005. [92] T. Chretiennot, D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 972–978, 2013. [93] G. M. Rocco et al., "3-D printed microfluidic sensor in SIW technology for liquids’ characterization," IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175–1184, 2020. [94] W. L. Clarke, “The original Clarke error grid analysis (EGA),” Diabetes Technol. Therapeutics, vol. 7, no. 5, pp. 776–779, Oct. 2005. [95] R. K. R. Jayanthi, B. S. Virdee, I. Lubangakene, P. Ganguly, and D. Mariyanayagam, "The effect of temperature on permittivity measurements of aqueous solutions of glucose for the development of non-invasive glucose sensors based on electromagnetic waves," Results Eng., vol. 20, 2023. [96] S. Kayal, T. Shaw, and D. Mitra, "Design of metamaterial-based compact and highly sensitive microwave liquid sensor," Appl. Phys. A, vol. 126, no. 1, 2019. [97] A. A. Mohd Bahar, Z. Zakaria, S. R. Ab Rashid, A. A. M. Isa, and R. A. Alahnomi, "Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement," Microw. Opt. Technol. Lett., vol. 59, no. 2, pp. 367–371, 2016. [98] M. Abdolrazzaghi, M. Daneshmand, and A. K. Iyer, "Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling," IEEE Trans. Microw. Theory Techn., vol. 66, no. 4, pp. 1843–1855, 2018. [99] Y.-T. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, "A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring," IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335–344, 2012. [100] S. Zeising et al., "Towards realisation of a non-invasive blood glucose sensor using microstripline," presented at the 2020 IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC), 2020. [101] Z. Yi and C. Wang, "Noninvasive glucose sensors using defective-ground-structure coplanar waveguide," IEEE Sensors J., vol. 23, no. 1, pp. 195–201, 2023. [102] S. T. M. N. Hasan, P. Singh, M. D. Nadeem, and M. Rudramuni, "Cylindrical dielectric resonator antenna sensor for non-invasive glucose sensing application," presented at the 2019 6th Int. Conf. Signal Process. Integr. Netw. (SPIN), 2019. [103] W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sens. Actuators A Phys., vol. 189, pp. 233–237, 2013. [104] E. L. Chuma, Y. Iano, G. Fontgalland, and L. L. B. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors J., vol. 18, no. 24, pp. 9978–9983, 2018. [105] E. L. Chuma, Y. Iano, G. Fontgalland, L. L. B. Roger, and H. Loschi, "PCB-integrated non-destructive microwave sensor for liquid dielectric spectroscopy based on planar metamaterial resonator," Sens. Actuators A Phys., vol. 312, 2020. [106] A. Kumar, M. S. Rajawat, S. K. Mahto, and R. Sinha, "Metamaterial-inspired complementary split ring resonator sensor and second-order approximation for dielectric characterization of fluid," J. Electron. Mater., vol. 50, no. 10, pp. 5925–5932, 2021. [107] M. G. Mayani, F. J. Herraiz-Martinez, J. M. Domingo, R. Giannetti, and C. R.-M. Garcia, "A novel dielectric resonator-based passive sensor for drop-volume binary mixtures classification," IEEE Sensors J., vol. 21, no. 18, pp. 20156–20164, 2021. [108] M. Palandoken et al., "Novel microwave fluid sensor for complex dielectric parameter measurement of ethanol–water solution," IEEE Sensors J., vol. 23, no. 13, pp. 14074–14083, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98274 | - |
| dc.description.abstract | 相較於傳統微波感測器多以集中元件電路(Lumped element circuit)進行設計與分析,雖然在窄頻範圍可提供準確預測,然而在面對寬頻的需求時,常受限於模型簡化造成準確性下降。為克服此限制,本文提出利用分布元件電路(Distributed element circuit)建構耦合傳輸線模型,並以奇模態與偶模態分析電磁場的分佈特性,實現由主傳輸路徑向兩個獨立通道的能量分配,最後應用於非平面式分裂共振環增強型微波感測器(Non-Planar SRR-Enhanced Microwave Sensor, NPSRREMS),此方法不僅展現良好的感測靈敏度與場能集中效果,亦提供一套結合理論分析與實務設計的快速建模途徑,有助於未來針對複雜三維結構之感測器進行更高效率之設計與驗證。此結構在兩通道分別配置共振環,使電磁場得以集中於感測腔體內部區域,將待測物置於該區域時,待測物介電係數的變化會影響感測腔體內部電場分佈,使得散射參數中的共振頻率產生偏移。此機制使該結構在感測過程中具有明確的頻率響應,對不同材料的變化有靈敏的辨識能力。此外,本文亦提出一項額外設計,透過注射幫浦使液體流經流道,從而實現即時的液體感測。
為驗證本感測架構之可行性,本文採用高頻性能穩定的Rogers RO4350B板材製作感測器,並透過向量網路分析儀進行散射參數量測,以分析實際感測響應。最後模擬結果與實驗數據比對顯示,此結構具良好的共振靈敏度,裝置本身設計的共振頻率為5.0792 GHz,最大電場強度達到1012.49 kV/m,而對於介電係數靈敏度可達到4.23 MHz/Δε,驗證了耦合傳輸線分支結構應用於非平面感測器之潛力。在葡萄糖溶液感測上,靈敏度也達到了382.82 kHz/(mg/dL),而乙醇水溶液則是有2.30 MHz/%的效果,展現出本研究所提出三維能量分佈設計於高靈敏度液體介電係數感測中的應用可行性與優勢,具備進一步擴展至多通道感測應用的發展潛力。 | zh_TW |
| dc.description.abstract | Compared to conventional microwave sensors that are typically designed and analyzed using lumped element circuits, which provide accurate predictions within narrowband ranges, such models often suffer from reduced accuracy when applied to broadband applications due to oversimplified assumptions. To overcome this limitation, this study proposes the use of distributed element circuits to construct a coupled transmission line model. By employing even-mode and odd-mode analysis, the electromagnetic field distribution characteristics are thoroughly examined, enabling the division of energy from the main transmission path into two independent channels. This methodology is further applied to the design of a Non-Planar SRR-Enhanced Microwave Sensor(NPSRREMS).
The proposed approach not only demonstrates excellent sensing sensitivity and field concentration capability, but also provides a fast modeling framework that bridges theoretical analysis with practical design. This modeling strategy facilitates efficient development and validation of complex three-dimensional sensing structures. In the designed sensor, split-ring resonators(SRRs)are strategically positioned along both transmission channels, allowing the electromagnetic field to concentrate within the central sensing cavity. When a material under test is placed in this region, changes in its dielectric constant perturb the local electromagnetic field, resulting in a shift in the resonance frequency observable in the scattering parameters. This mechanism ensures a well-defined frequency response during the sensing process and enables sensitive detection of material property variations. Additionally, this work introduces a real-time sensing configuration, in which syringe pumps are employed to deliver liquids through a fluidic channel. This enables dynamic monitoring of dielectric property changes in flowing liquid samples. To validate the feasibility of the proposed sensing architecture, a prototype sensor was fabricated using high-frequency-stable Rogers RO4350B substrate. Scattering parameters were measured using a vector network analyzer to analyze the actual sensing response. A comparison between simulation and experimental results confirms that the designed structure exhibits excellent dual-port response characteristics and resonance sensitivity. The designed device exhibits a resonance frequency of 5.0792 GHz, with a maximum electric field intensity reaching 1012.49 kV/m. The sensitivity to dielectric constant changes achieves 4.23 MHz/Δε, demonstrating the potential of the branched coupled-line structure for non-planar sensing applications. In the glucose solution sensing experiment, a sensitivity of 382.82 kHz/(mg/dL) was achieved, while ethanol–water mixtures obtain a sensitivity of 2.30 MHz/%. These results demonstrate the feasibility and advantages of the proposed three-dimensional energy distribution design in high-sensitivity dielectric sensing of liquids. The structure also shows promising potential for future applications in multi-channel sensing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:11:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:11:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 vi 圖次 ix 表次 xiii 符號表 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 微波感測器 2 1.2.2 生醫及葡萄糖感測器 6 1.2.3 耦合傳輸線 13 1.2.4 均質與非均質材料感測 17 第二章 理論 21 2.1 傳輸線理論 21 2.1.1 傳輸線阻抗匹配設計 21 2.2 耦合傳輸線理論 23 2.2.1 奇模態與偶模態分析 23 2.3 分裂共振環(Split Ring Resonator, SRR)及其感測原理 33 2.4 葡萄糖水溶液德拜模型(Debye model) 34 第三章 設計與模擬 36 3.1 NPSRREMS設計 36 3.1.1 NPSRREMS結構設計 36 3.2 等效電路分析 37 3.2.1 ADS電路模擬軟體簡介 37 3.2.2 平面耦合傳輸線等效電路模型 38 3.3 CST 3D電磁模擬 40 3.3.1 CST電磁模擬軟體簡介 40 3.3.2 平面耦合傳輸線之三維電磁分析 40 3.3.3 NPSRREMS之三維電磁分析 42 3.3.4 結構參數 45 第四章 感測器製作及量測 49 4.1 感測器製程 49 4.2 量測簡介 52 4.2.1 向量網路分析儀 52 4.2.2 散射參數(S-parameters) 53 4.3 葡萄糖溶液量測 54 4.3.1 成品測試 54 4.3.2 實驗架設與量測 55 4.4 流道與即時感測 58 4.4.1 流道尺寸參數與製作 59 4.4.2 即時感測 59 第五章 分析與討論 63 5.1 介電係數與感測靈敏度 63 5.1.1 感測器對介電係數靈敏度 63 5.2 溶液感測及CEG分析 67 5.2.1 葡萄糖溶液感測 67 5.2.2 (CEG)分析 73 5.2.3 乙醇水溶液量測 74 5.3 非均質待測物高度模擬分析 75 5.4 溫度對葡萄糖溶液影響 77 5.5 感測性能比較 78 5.6 具參考通道之多通道微波感測器構想 81 第六章 結論與未來展望 84 參考文獻 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非平面微波感測器 | zh_TW |
| dc.subject | 即時流道感測 | zh_TW |
| dc.subject | 耦合傳輸線 | zh_TW |
| dc.subject | 葡萄糖溶液感測 | zh_TW |
| dc.subject | coupled transmission line | en |
| dc.subject | non-planar microwave sensor | en |
| dc.subject | real-time fluidic channel sensing | en |
| dc.subject | glucose solution sensing | en |
| dc.title | 非對稱微波耦合傳輸線具雙埠出口與其非平面感測應用 | zh_TW |
| dc.title | Asymmetric microwave coupled transmission line with dual-port output and its application in non-planar sensing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳玉彬;劉承揚;蕭惠心 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Bin Chen;Cheng-Yang Liu;Hui-Hsin Hsiao | en |
| dc.subject.keyword | 耦合傳輸線,非平面微波感測器,葡萄糖溶液感測,即時流道感測, | zh_TW |
| dc.subject.keyword | coupled transmission line,non-planar microwave sensor,glucose solution sensing,real-time fluidic channel sensing, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202501588 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 50.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
