請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德 | zh_TW |
| dc.contributor.advisor | J Bruce H Shyu | en |
| dc.contributor.author | 林子游 | zh_TW |
| dc.contributor.author | Tsz Yau Amundsen Lam | en |
| dc.date.accessioned | 2025-07-31T16:11:04Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Agisoft (2021). Agisoft Metashape User Manual Professional Edition, Version 1.7.
Angelier, J., Barrier, E., & Chu, H.-T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: the foothills of Taiwan. Tectonophysics, 125, 161-178. Angelier, J., Chu, H.-T., & Lee, J.-C. (1997). Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274, 117-143. Angelier, J., Chu, H.-T., Lee, J.-C., & Hu. J.-C. (2000). Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan. Journal of Geodynamics, 29, 151-185. Barrier, E., Angelier, J., Chu, H.-T., & Teng, L. S. (1982). Tectonic analysis of compressional structure in an active collision zone: the deformation of Pinanshan Conglomerates, eastern Taiwan. Proceedings of the Geological Society of China, 25, 123-138. Barrier, E., & Angelier, J. (1986). Active collision in eastern Taiwan: the Coastal Range. Tectonophysics, 125, 39-72. Bi, H., Zheng, W., Ren, Z., Zeng, J., & Yu, J. (2017). Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 38, 2495-2510. Biq, C. (1972). Dual-trench structure in the Taiwan-Luzon region. Proceedings of the Geological Society of China, 15, 66-75. Bonilla, M. G. (1975). A review of recently active faults in Taiwan. U. S. Geological Survey Open-File Report, 75-41,43 pp. Chai, B. H. T. (1972). Structure and tectonic evolution of Taiwan. American Journal of Science, 272, 389-422. Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K.-C., & Hu, J.-C. (2012). Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth and Planetary Science Letters, 337-338, 144-155. Chang, H.-C., Lin, C.-W., Chen, M.-M., & Lu, S.-T. (1998). An Introduction to the Active Faults of Taiwan, Explanatory Text of the Active Fault Map of Taiwan (In Chinese with English Abstract). Special Publication of the Central Geological Survey, 10, 103 pp., Central Geological Survey, Taipei. Chang, C.-P., Angelier, J., & Huang, C.-Y. (2000). Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325, 43-62. Chen, C.-S. (1998). Mapping plate boundaries using TEM method along the Longitudinal Valley, Taiwan. Geophysics, 63, 868-879. Chen, K. H., Nadeau, R. M., & Rau, R.-J. (2008). Characteristic repeating earthquakes in an arc-continent collision boundary zone: The Chihshang fault of eastern Taiwan. Earth and Planetary Science Letters, 276, 262-272. Chen, W.-S., Yen, I.-C., Fengler, K. P., Rubin, C. M., Yang, C.-C., Yang, H.-C., Chang, H.-C., Lin, C.-W., Lin, W.-H., Liu, Y.-C., & Lin, Y.-H. (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan. Earth and Planetary Science Letters, 264, 420-437. Chen, W.-S., Lin, I.-C., Yen, Y.-C., Yang, C.-C., Chi, C.-Y., Huang, N.-W., Lin, C.-W., Lin, W.-S., Hou, C.-S., Liu, Y.-C., Lin, Y.-H., Shih, T.-S., & Lu, S.-T. (2008). Fault Segmentation of the Longitudinal Valley Fault in Eastern Taiwan: Evidence from Paleoseismic Investigations and GPS Observations (In Chinese with English Abstract). Special Publication of the Central Geological Survey, 20, 165-191. Cheng, S.-N., Yeh, Y. T., & Yu, M.-S. (1996). The 1951 Taitung earthquake in Taiwan. Journal of the Geological Society of China, 39, 267-285. Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial. Foundations and trends® in Computer Graphics and Vision, 9, 1-148. Ho, C.-S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16. Hsu, T. L. (1954). On the geomorphic features and the recent uplifting movement of the Coastal Range, eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 7, 51-57. Hsu, T. L. (1956). Geology of the Coastal Range, eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 8, 39-63. Hsu, T. L. (1962). Recent faulting in the Longitudinal Valley Fault of eastern Taiwan. Memoir of the Geological Society of China, 1, 95-102. Hsu, Y.-C., Chang, C.-P., Yen, I.-C., Huang, S.-Y., & Yen, J.-Y. (2024). Investigating the Structure under the Pingting Terrace from the Co-Seismic Deformation of the 2022 Guanshan Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 35, 3. Hu, J.-C., Cheng, L.-W., Chen, H.-Y., Wu, Y.-M., Lee, J.-C., Chen, Y.-G., Lin, K.-C., Rau, R.-J., Kuochen, H., Chen, H.-H., Yu, S.-B., & Angelier, J. (2007). Coseismic deformation revealed by inversion of strong motion and GPS data: The 2003 Chengkung earthquake in eastern Taiwan. Geophysical Journal International, 169, 667-674. Ishiguro, S., Yamano, H., & Oguma, H. (2016). Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion–multi-view stereo technology. Geomorphology, 268, 64-71. Jhuang, Y.-K. (2010). Topographic change on Hualien area by means of old aerial photos and Japanese topographic map (In Chinese with English Abstract). Graduate Institute of Civil and Disaster Prevention Engineering, National Taipei University of Technology, master’s thesis, 133 pp. Jiang, Y.-L., Chu, H.-T., Lee, J.-C., & Huang, C.-Y. (2012). Investigation and Characterization of Surface Ruptures and Deformation Zone of the Chihshang Fault, Eastern Taiwan (In Chinese with English Abstract). Special Publication of the Central Geological Survey, 26, 101-138. Johnson, K., Nissen, E., Saripalli, S., Arrowsmith, J. R., McGarey, P., Scharer, K., Williams, P., & Blisniuk, K. (2014). Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10, 969-986. Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K. K., Bjørk, A. A., Schomacker, A., & Kjær, K. H. (2016). Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Scientific Data, 3, 1-15. Kuochen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C., & Chen, W.-S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial Atmospheric and Oceanic Sciences, 15, 647-666. Kuochen, H., Wu, Y.-M., Chen, Y.-G., & Chen, R.-Y. (2007). 2003 Mw6. 8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, 31, 332-339. Lai, Y.-P. (2017). Shallow Creep Along the Southern Longitudinal Valley Fault in Eastern Taiwan Using PSInSAR and Geodetic Approaches. International Master Program on Natural Hazards Mitigation and Management, College of Engineering, National Cheng Kung University, master’s thesis, 159 pp. Lallemand, S., & Liu, C.-S. (1998). Geodynamic implications of present-day kinematics in the southern Ryukyus. Journal of the Geological Society of China, 41, 551–564. Lee, J.-C., & Angelier, J. (1993). Localisation des déformations actives et traitement des données géodésiques: l’exemple de la faille de la Vallée Longitudinale, Taiwan. Bulletin de la Société Géologique de France, 164, 533-570. Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333, 219-240. Lee, J.-C., Angelier J., Chu, H.-T., Hu, J.-C., Jeng. F.-S., & Rau, R.-J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research, 108, 2528. Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2005). Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan. Comptes Rendus Geoscience, 337, 1200-1207. Lee, J.-C., Chu, H,-T., Angelier, J., Hu, J.-C., Chen, H.-Y., & Yu, S.-B. (2006). Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw = 6.5, Chengkung earthquake in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111, B02405. Lee, Y.-C. (2022). The relationship between active tectonics in the northern Longitudinal Valley and 1972 Rueisuei earthquake assessed by historical aerial photos reconstruction (In Chinese with English Abstract). Department of Geosciences, College of Science, National Taiwan University, master’s thesis, 127 pp. Lee, Y.-R. (2007). Geomorphologic and structural analyses of the Wanan alluvial fans near the Chihshang fault in eastern Taiwan (In Chinese with English Abstract). Department of Geosciences, College of Science, National Taiwan University, master’s thesis, 71 pp. Lee, Z. X. (2022). Estimating the multidecadal erosional pattern of the Lichi Badland by using historical aerial photos (In Chinese with English Abstract). Department of Geography, College of Science, National Taiwan University, master’s thesis, 87 pp. Lin, C.-W., Chang, H.-C., Lu, S.-T., & Shih, T.-S. (2000). An Introduction To The Active Faults Of Taiwan [With Explanatory Text Of The Active Fault Map Of Taiwan, Scale 1:500,000] (In Chinese with English Abstract). Special publication of the Central Geological Survey, 13, 122 pp., Central Geological Survey, Taipei. Lin, C.-W., Chen, W.-S., Liu, Y.-C., & Chen, P.-T. (2009). Active Faults of Eastern and Southern Taiwan (In Chinese with English Abstract). Special publication of the Central Geological Survey, 23, 178 pp., Central Geological Survey, Taipei. Lin, C.-W., Liu, Y.-C., Chou, P.-S., & Lin, Y.-H. (2021). Recent development of active fault investigations of Taiwan (In Chinese with English Abstract). Bulletin of the Central Geological Survey, 34, 1-40. Lin, C.-Y. (2022). Tectonic geomorphology analysis in Hsinchu area by using historical aerial photos and SfM technique (In Chinese with English Abstract). Department of Geography, College of Science, National Taiwan University, master’s thesis, 94 pp. Lin, P.-A. (2020). Image Mosaicking and Georeferencing of Historical Aerial Photograph in Taiwan. (In Chinese with English Abstract). Department of Geomatics, College of Engineering, National Cheng Kung University, master’s thesis, 74 pp. Linder, W. (2009). Digital photogrammetry (Vol. 1). Berlin/Heidelberg, Germany: Springer, 220 pp. Liu, Y.-C., Lin, Y.-H., Liang, S.-H., Chou, P.-S., Chen, Y.-H., Lee, C.-H., Chen, C.-L., Shih, T.-S., Wang, I.-F. (2022) Geological investigation for 20220917 Guanshan Earthquake and 0918 Chihshang Earthquake (In Chinese). Central Geological Survey report, 78 pp. Download link: https://fault.gsmma.gov.tw/Reports/More/63cc5a4b2020403d9f79d3c33a7aba0c Nakano, T., Kamiya, I., Tobita, M., Iwahashi, J., & Nakajima, H. (2014). Landform monitoring in active volcano by UAV and SFM-MVS technique. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8, 71-75. Paine, D. P., & Kiser, J. D. (2012). Aerial Photography and Image Interpretation. John Wiley & Sons, 648 pp. Piermattei, L., Carturan, L., de Blasi, F., Tarolli, P., Dalla Fontana, G., Vettore, A., & Pfeifer, N. (2016). Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes. Earth Surface Dynamics, 4, 425-443. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06), 1, 519-528. Schiefer, E., & Gilbert, R. (2007). Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology, 88, 167-178. Shih, T.-T., Teng, K.-H., Chang, J.-C., Shih, C.-D., & Yang, G.-S. (1986). A Geomorphological Study Of Active Fault In Taiwan (In Chinese with English Abstract). Geographical Research, 12, 1-44. Shyu, J. B. H., Sieh, K., Avouac, J.-P., Chen, W.-S., & Chen, Y.-G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111, B08403. Shyu, J. B. H., Chung, L.-H., Chen, Y.-G., Lee, J.-C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31, 317-331. Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., & Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31, 469-478. Snavely, K. N. (2008). Scene Reconstruction and Visualization from Internet Photo Collections. University of Washington, doctoral dissertation, 192 pp. Tang, C.-H., Lin, Y. N., Tung, H., Wang, Y., Lee, S.-J., Hsu, Y.-J., Shyu, J. B. H., Kuo, Y.-T., & Chen, H.-Y. (2023). Nearby fault interaction within the double-vergence suture in eastern Taiwan during the 2022 Chihshang earthquake sequence. Communications Earth & Environment, 4, 333. Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C., & Kuo, L.-C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119, 5114-5139. Wang. Y., Wu, S.-H., Chou, H. L. B., Li, Y.-Y., Cheng, W. S., Ho, A., Chen, J.-M., Liu, S.-C., Hsieh, C.-Y., Duan, S., Min, S. M., Myo, E. M. N., Tsai, Y.-L., Liang, N.-W., Liao, J.-H., Lam, T. Y. A., Chang, E.-W., & Shyu, J. B. H. (2024). Surface ruptures of the 2022 Guanshan-Chihshang earthquakes in central Longitudinal Valley area, eastern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 35, 16. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. Wu, Y.-M., Chen, Y.-G., Shin, T.-C., Kuochen, H., Hou, C.-S., Hu, J.-C., Chang, C.-H., Wu, C.-F., & Teng, T.-L. (2006). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan. Geophysical Research Letters, 33, L02312. Yang, G.-S. (1986). A Geomorphological Study of Active Faults in Taiwan – Especially on the Relation between Active Faults and Geomorphic Surfaces (In Chinese). Chinese Culture University, doctoral dissertation, 178 pp. Yu, M.-S. (1997). Active Faults in the Taitung Longitudinal Valley (In Chinese). National Taiwan University, doctoral dissertation, 141 pp. Yu, S.-B., & Liu, C.-C. (1989). Fault creep on the central segment of the Longitudinal Valley Fault, eastern Taiwan. Proceedings of the Geological Society of China, 32, 209-231. Yu, S.-B., & Kuo, L.-C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217. Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59. Yu, S.-B., Kuo, L.-C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical Research Letters, 26, 923-926. Yuan, L.-S. (2012). Digital Terrain Model Construction based on Historical Aerial Photography, and its Application for the 1951 Ruei-Suie Earthquake Deformation Estimation (In Chinese with English Abstract). Graduate Institute of Civil and Disaster Prevention Engineering, National Taipei University of Technology, master’s thesis, 112 pp. Shen, S.-M., Chang, J.-C., & Yang, G.-S. (2006). 沈淑敏、張瑞津、楊貴三(2006)地震地質調查及活動斷層資料庫建置-活動構造地形及資料庫建置分析(2/2)。經濟部中央地質調查所研究報告95-13號,共105頁,經濟部中央地質調查所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98271 | - |
| dc.description.abstract | 縱谷斷層系統為臺灣最活躍的斷層系統之一,其中自玉里春日向南延伸至鹿野瑞源的池上斷層段,已發現是一條具高速率(約20–30 mm/yr)震間潛移特性的活動斷層。然而,這條活躍的潛移斷層仍有一定的孕震風險,根據歷史地震紀錄,1951年11月的地震序列僅在玉里至池上一帶觀察到地表破裂現象,而在池上以南至鹿野的關山地區(本文稱為關山段)則無地表破裂紀錄。目前針對關山段的斷層特性研究十分有限,主因是該地區受人類活動及河流作用顯著影響,斷層跡及相關地形特徵多已被抹去,導致調查困難。
隨著攝影測量技術的發展,目前已能利用歷史航照重建已消失的地形特徵。儘管許多研究成功運用「運動回復結構」(Structure from Motion, SfM)與「多視角立體匹配」(Multi-view Stereo, MVS)技術於分析大尺度地形,但其在小尺度斷層變形的地形研究中應用仍然有限。本研究利用1947年至1974年間的歷史航照,藉由SfM-MVS方法重建關山段的歷史數值地表模型與正射影像,以評估此方法應用於小尺度的活動斷層地形與活動性分析之可行性。 透過檢視成功與失敗的重建結果,本研究歸納出以歷史航照進行斷層地形分析時所面臨的主要限制,並提出具體的應用建議。本研究也提出一套可供解釋歷史地形的地表指標,經由分析電光階地於1947年至1974年間的地形變化,本研究認為此地區的斷層跡應位於現代河蝕崖地形更西側的位置。此外,根據研究結果,該階地地形在13年間(1961至1974年)大致未見顯著變化,顯示此段期間未有明顯的地表變形跡象。結合實地調查結果推測,縱谷斷層關山段可能並非潛移型斷層,而更傾向具震間鎖定特性的斷層行為。 | zh_TW |
| dc.description.abstract | The Longitudinal Valley fault system (LVFs) is one of the most active fault systems in Taiwan. The Chihshang fault segment, which extends from Yuli to Luyeh, has been identified as an active creeping fault with a high slip rate of approximately 20–30 mm/yr. However, historical earthquake records indicate that surface ruptures of the November 1951 earthquake series were only observed between Yuli and Chihshang, with no evidence of rupture between Chihshang and Luyeh in the Guanshan area (referred to as the Guanshan section). To date, limited research has focused on this section, partly due to significant modification of fault traces and topographic features by human activity and fluvial processes.
Advances in photogrammetry now enable the reconstruction of historical landforms using historical aerial photographs. While numerous previous studies have successfully applied structure from motion (SfM) and multi-view stereo (MVS) techniques for large-scale geomorphic analyses, their application to small-scale fault deformation has remains limited. In this study, we utilized historical aerial photographs from 1947 to 1974 to reconstruct historical digital surface models and orthomosaics along the Guanshan section using the SfM-MVS method, with the goal of assessing the feasibility of this approach for analyzing fault-related landforms and activity at a smaller scale. Through the evaluation of both successful and unsuccessful modeling results, we identify key limitations and offer recommendations for the effective use of historical aerial photographs in active fault topographic analysis. We also propose a surface indicator useful for historical topographic interpretation using orthomosaics. An analysis of topographic changes along the Dianguang terrace between 1947 and 1974 suggests that the actual fault trace potentially located farther west. Furthermore, our results indicate that the topography of the Dianguang terrace remained largely unchanged during the 13-year period from 1961 to 1974, suggesting the absence of surface deformation. Combined with field observations, these findings imply that the Guanshan section of the LVFs may not exhibit creeping behavior and is more likely characterized by interseismic locking and strain accumulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:11:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:11:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i
Acknowledgement ii 摘要 iv Abstract v Contents vii List of figures xi List of tables xvii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Purpose 9 Chapter 2 Literature review 10 2.1 Longitudinal Valley fault System 10 2.2 Chihshang fault segment of the Longitudinal Valley fault System 13 2.3 Guanshan section of the Chihshang fault segment 22 2.4 The application of historical aerial photos and SfM-MVS in Taiwan 28 Chapter 3 Methodology 32 3.1 Research framework 32 3.2 Research materials 34 3.2.1 Aerial photos from the 1940s 36 3.2.2 Aerial photos from the 1960s 37 3.2.3 Aerial photos from the 1974 40 3.2.4 Strips planning and overlap of aerial photographs 40 3.3 DSM reconstruction 44 3.3.1 Structure from motion and multi-view stereo matching 44 3.3.2 Preprocessing of historical aerial photographs 45 3.3.3 Control points 46 3.3.4 Agisoft Metashape Pro workflow 51 3.4 Data verification 55 3.5 Historical orthomosaic mapping 56 3.6 Field investigations 57 3.6.1 Field survey planning 57 3.6.2 RTK-GNSS measurement 59 3.6.3 Adjustment and projection of RTK measurement 60 Chapter 4 Results 63 4.1 Historical DSMs 63 4.2 Data verification results 66 4.2.1 Accuracy evaluation of control points and overlap rates 66 4.2.2 Error distribution analysis 69 4.2.3 DoD method results 75 4.2.4 Elevation accuracy assessment of historical DSMs 78 4.3 Historical orthomosaics 84 4.4 Fieldwork results 95 4.4.1 RTK-GNSS data 95 4.4.2 Field investigation of the Dianguang region 100 Chapter 5 Discussion 102 5.1 Key factors affecting historical DSM reconstruction 102 5.1.1 Quality of historical aerial photographs 102 5.1.2 Overlap rates of historical aerial photographs 104 5.2 Tests and recommendations from reconstruction processes 108 5.2.1 Extended modeling approaches 108 5.2.2 Resolution selection for DSM output 113 5.3 Limitations due to research subjects 122 5.4 Application of historical orthomosaics 126 5.4.1 Effect on the topography by agricultural activity 126 5.4.2 Historical topographic reconstruction using orthomosaics 133 5.4.3 Geomorphic changes along the Guanshan section 139 5.5 Possible mechanisms for the observed topographic changes 142 5.5.1 Agricultural activities 142 5.5.2 Fluvial deposition 143 5.5.3 Tectonic deformation 144 5.6 Remaining issues of the Guanshan section 151 Chapter 6 Conclusions 153 References 155 Appendix 1: Historical aerial photo ID numbers 165 Appendix 2: Control points accuracy result 168 Appendix 3: Profiles of each historical DSMs 173 Appendix 4: RTK-GNSS measurement data 184 Appendix 5: Profiles of extended modeling approaches 207 Appendix 6: Profiles of resolution selection for DSM output 214 | - |
| dc.language.iso | en | - |
| dc.subject | 縱谷斷層系統 | zh_TW |
| dc.subject | 池上斷層 | zh_TW |
| dc.subject | 關山段 | zh_TW |
| dc.subject | 歷史航照 | zh_TW |
| dc.subject | 運動回復結構 | zh_TW |
| dc.subject | 數值地表模型 | zh_TW |
| dc.subject | 地形學 | zh_TW |
| dc.subject | Chihshang fault segment | en |
| dc.subject | Longitudinal Valley fault system | en |
| dc.subject | geomorphology | en |
| dc.subject | historical digital surface model | en |
| dc.subject | structure from motion | en |
| dc.subject | historical aerial photographs | en |
| dc.subject | Guanshan section | en |
| dc.title | 利用歷史航照分析斷層地形與活動之可行性: 以縱谷斷層關山段為例 | zh_TW |
| dc.title | Assessing the Feasibility of Historical Aerial Photographs for Analyzing Fault-related Landforms and Activity: A Case Study of the Guanshan Section of the Longitudinal Valley Fault, Eastern Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李建成;王昱;莊昀叡;郭昱廷 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Cheng Lee;Yu Wang;Ray Y. Chuang;Yu-Ting Kuo | en |
| dc.subject.keyword | 縱谷斷層系統,池上斷層,關山段,歷史航照,運動回復結構,數值地表模型,地形學, | zh_TW |
| dc.subject.keyword | Longitudinal Valley fault system,Chihshang fault segment,Guanshan section,historical aerial photographs,structure from motion,historical digital surface model,geomorphology, | en |
| dc.relation.page | 226 | - |
| dc.identifier.doi | 10.6342/NTU202502419 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 43.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
