Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98265
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌zh_TW
dc.contributor.advisorHui-Ping Tserngen
dc.contributor.author高陞zh_TW
dc.contributor.authorSheng Kaoen
dc.date.accessioned2025-07-31T16:09:47Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation[1] 勞動部職業安全衛生署. 勞動檢查統計年報. 勞動部職業安全衛生署, 新北市, 台灣, 2024. 中華民國112年勞動檢查統計年報.

[2] Wei-Cheng Chen. Development of Individual Workload Management of Construction Workers Using Wearable Devices in Real-Time Physiological Sensing System. PhD thesis, National Taiwan University, Taipei, Taiwan, July 2022.

[3] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol of internet of things (iot). In International conference on telecommunication, power analysis and computing techniques (ICTPACT-2017), volume 20, pages 173–177, 2017.

[4] Ming Xue and Changjun Zhu. The socket programming and software design for communication based on client/server. In 2009 Pacific-Asia Conference on Circuits, Communications and Systems, pages 775–777. IEEE, 2009.

[5] Jonathan de Carvalho Silva, Joel JPC Rodrigues, Antonio M Alberti, Petar Solic, and Andre LL Aquino. Lorawan—a low power wan protocol for internet of things: Areview and opportunities. In 2017 2nd International multidisciplinary conference on computer and energy science (SpliTech), pages 1–6. IEEE, 2017.

[6] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data using conditional gan. Advances in neural information processing systems, 32, 2019.

[7] AshishVaswani, NoamShazeer, NikiParmar, JakobUszkoreit, LlionJones, AidanN Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[8] Xiu-Zhen Huang. Heart-rate-reserve based machine learning for fatigue classification of construction workers and individual safety management. Master’s thesis, National Taiwan University, Taipei, Taiwan, June 2023.

[9] Roger A Haslam, Sophie A Hide, Alistair GF Gibb, Diane E Gyi, Trevor Pavitt, Sarah Atkinson, and Alexander Roy Duff. Contributing factors in construction accidents. Applied ergonomics, 36(4):401–415, 2005.

[10] Alistair Gibb, Sophie Hide, Roger Haslam, Diane Gyi, Trevor Pavitt, Sarah Atkinson, and Roy Duff. Construction tools and equipment–their influence on accident causality. Journal of Engineering, Design and Technology, 3(1):12–23, 2005.

[11] Ahmed Senouci, Surya Anuradha Garimella, and Kyungki Kim2 Neil Eldin. A model for predicting construction worker fatigue. Journal of Smart Buildings and Construction Technology| Volume, 4(02), 2022.

[12] Shahnawaz Anwer, Heng Li, Waleed Umer, Maxwell Fordjour Antwi-Afari, Imran Mehmood, Yantao Yu, Carl Haas, and Arnold Yu Lok Wong. Identification and classification of physical fatigue in construction workers using linear and nonlinear heart rate variability measurements. Journal of Construction Engineering and Management, 149(7):04023057, 2023.

[13] David Langford, Steve Rowlinson, and Edwin Sawacha. Safety behaviour and safety management: its influence on the attitudes of workers in the uk construction industry. Engineering, Construction and Architectural Management, 7(2):133–140, 2000.

[14] Ashrant Aryal, Ali Ghahramani, and Burcin Becerik-Gerber. Monitoring fatigue in construction workers using physiological measurements. Automation in Construction, 82:154–165, 2017.

[15] Mohammadsoroush Tafazzoli, Mostafa Namian, and Ahmed Al-Bayati. Workers'fatigue in construction projects, assessment, detection, and mitigation, a review. Proc. 59th Annu. Assoc. Sch, 4:488–496, 2023.

[16] Abdullahi Ibrahim, Chukwuma Nnaji, Mostafa Namian, Amanda Koh, and Ulises Techera. Investigating the impact of physical fatigue on construction workers'situational awareness. Safety science, 163:106103, 2023.

[17] Yewei Ouyang, Ming Liu, Cheng Cheng, Yuchen Yang, Shiyi He, and Lan Zheng. Monitoring inattention in construction workers caused by physical fatigue using electrocardiograph (ecg) and galvanic skin response (gsr) sensors. Sensors, 23(17):7405, 2023.

[18] Mahdi Ghafoori, Caroline Clevenger, Moatassem Abdallah, and Kevin Rens. Heart rate modeling and prediction of construction workers based on physical activity using deep learning. Automation in Construction, 155:105077, 2023.

[19] Srikanth Sagar Bangaru, Chao Wang, and Fereydoun Aghazadeh. Automated and continuous fatigue monitoring in construction workers using forearm emg and imu wearable sensors and recurrent neural network. Sensors, 22(24):9729, 2022.

[20] Yantao Yu, Heng Li, Xincong Yang, Liulin Kong, Xiaochun Luo, and Arnold YL Wong. An automatic and non-invasive physical fatigue assessment method for construction workers. Automation in construction, 103:1–12, 2019.

[21] Zhiqiang Ni, Fangmin Sun, and Ye Li. Heart rate variability-based subjective physical fatigue assessment. Sensors, 22(9):3199, 2022.

[22] Waleed Umer, Yantao Yu, Maxwell Fordjour Antwi Afari, Shahnawaz Anwer, and Arshad Jamal. Towards automated physical fatigue monitoring and prediction among construction workers using physiological signals: An on-site study. Safety Science, 166:106242, 2023.

[23] Arsalan Lambay, Ying Liu, Phillip Morgan, and Ze Ji. A data-driven fatigue prediction using recurrent neural networks. In 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pages 1–6. IEEE, 2021.

[24] András Matuz, Dimitri van der Linden, Gergely Darnai, and Árpád Csathó. Generalisable machine learning models trained on heart rate variability data to predict mental fatigue. Scientific Reports, 12(1):20023, 2022.

[25] András Matuz, Dimitri Van der Linden, Gergely Darnai, and Árpád Csathó. Machine learning models in heart rate variability based mental fatigue prediction: training on heterogeneous data to obtain robust models. Under Review at Scientific Reports, 2022.

[26] Sojeong Seong, Soyeon Park, YongHan Ahn, and Heejung Kim. Development of an integrated fatigue measurement system for construction workers: a feasibility study. BMC public health, 22(1):1593, 2022.

[27] Pei Pei Heng, Hanizah Mohd Yusoff, and Rozita Hod. Individual evaluation of fatigue at work to enhance the safety performance in the construction industry: A systematic review. PLoS one, 19(2):e0287892, 2024.

[28] Laurent Schmitt, Jacques Regnard, Maxime Desmarets, Fréderic Mauny, Laurent Mourot, Jean-Pierre Fouillot, Nicolas Coulmy, and Grégoire Millet. Fatigue shifts and scatters heart rate variability in elite endurance athletes. PloS one, 8(8):e71588, 2013.

[29] Ke Lu, Anna Sjörs Dahlman, Johan Karlsson, and Stefan Candefjord. Detecting driver fatigue using heart rate variability: A systematic review. Accident Analysis & Prevention, 178:106830, 2022.

[30] Suzanne C Segerstrom and Lise Solberg Nes. Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychological science, 18(3):275–281, 2007.

[31] Juha Karvonen and Timo Vuorimaa. Heart rate and exercise intensity during sports activities: practical application. Sports medicine, 5:303–311, 1988.

[32] Martin Garet, Gil Boudet, Christophe Montaurier, Michel Vermorel, Jean Coudert, and Alain Chamoux. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry. European journal of applied physiology, 94:46–53, 2005.

[33] Mauricio Garzon, Mathieu Gayda, Anil Nigam, Alain-Steve Comtois, and Martin Juneau. Immersible ergocycle prescription as a function of relative exercise intensity. Journal of sport and health science, 6(2):219–224, 2017.

[34] Sungjoo Hwang and SangHyun Lee. Wristband-type wearable health devices to measure construction workers’ physical demands. Automation in Construction, 83:330–340, 2017.

[35] Cristina-Ioana Pirscoveanu and Anderson Souza Oliveira. Prediction of instantaneous perceived effort during outdoor running using accelerometry and machine learning. European Journal of Applied Physiology, 124(3):963–973, 2024.

[36] Andrew S Jackson. Estimating maximum heart rate from age: Is it a linear relationship? Medicine and science in sports and exercise, 39(5):821–821, 2007.

[37] Suzanne Lerato Merkus, Pieter Coenen, Mikael Forsman, Stein Knardahl, Kaj Bo Veiersted, and Svend Erik Mathiassen. An exploratory study on the physical activity health paradox—musculoskeletal pain and cardiovascular load during work and leisure in construction and healthcare workers. International journal of environmental research and public health, 19(5):2751, 2022.

[38] Amin Alvanchi, SangHyun Lee, and Simaan AbouRizk. Dynamics of working hours in construction. Journal of Construction Engineering and Management, 138(1):66–77, 2012.

[39] Hsin-Chieh Wu and Mao-Jiun J Wang. Relationship between maximum acceptable work time and physical workload. Ergonomics, 45(4):280–289, 2002.

[40] Frederic S Lee. The effects of temperature and humidity on fatigue. American Journal of Public Health, 2(11):863–870, 1912.

[41] Helen Crewe, Ross Tucker, and Timothy D Noakes. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. European journal of applied physiology, 103:569–577, 2008.

[42] Tsung-Ming Tsao, Jing-Shiang Hwang, Chung-Yen Chen, Sung-Tsun Lin, Ming-Jer Tsai, and Ta-Chen Su. Urban climate and cardiovascular health: Focused on seasonal variation of urban temperature, relative humidity, and pm2.5 air pollution. Ecotoxicology and Environmental Safety, 263:115358, 2023.

[43] Birowo Herusasongko, Adi Heru Sutomo, and H Sudibyakto. Effects of the occupational physical environmental conditions and the individual characteristics of the workers on occupational stress and fatigue. International journal of public health science, 1(2):61–68, 2012.

[44] Neda Mahdavi, Iman Dianat, Rashid Heidarimoghadam, Hassan Khotanlou, and Javad Faradmal. A review of work environment risk factors influencing muscle fatigue. International journal of industrial ergonomics, 80:103028, 2020.

[45] Muneer Bani Yassein, Mohammed Q Shatnawi, Shadi Aljwarneh, and Razan Al-Hatmi. Internet of things: Survey and open issues of mqtt protocol. In 2017 international conference on engineering & MIS (ICEMIS), pages 1–6. IEEE, 2017.

[46] Meena Singh, MA Rajan, VL Shivraj, and Purushothaman Balamuralidhar. Secure mqtt for internet of things (iot). In 2015 fifth international conference on communication systems and network technologies, pages 746–751. IEEE, 2015.

[47] Haiping Si, Changxia Sun, Baogang Chen, Lei Shi, and Hongbo Qiao. Analysis of socket communication technology based on machine learning algorithms under tcp/ip protocol in network virtual laboratory system. IEEE Access, 7:80453–80464, 2019.

[48] Jetmir Haxhibeqiri, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. A survey of lorawan for iot: From technology to application. Sensors, 18(11):3995, 2018.

[49] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan Melia-Segui, and Thomas Watteyne. Understanding the limits of lorawan. IEEE Communications magazine, 55(9):34–40, 2017.

[50] Mukarram AM Almuhaya, Waheb A Jabbar, Noorazliza Sulaiman, and Suliman Abdulmalek. A survey on lorawan technology: Recent trends, opportunities, simulation tools and future directions. Electronics, 11(1):164, 2022.

[51] Cheng-Han Wu. Fatigue monitoring system for construction industry managers. Master’s thesis, National Taiwan University, Taipei, Taiwan, June 2024.

[52] Szu-Yu Lin, Chih-I Hung, Hsin-I Wang, Yu-Te Wu, and Po-Shan Wang. Extraction of physically fatigue feature in exercise using electromyography, electroencephalography and electrocardiography. In 2015 11th International Conference on Natural Computation (ICNC), pages 561–566. IEEE, 2015.

[53] Shahnawaz Anwer, Heng Li, Maxwell Fordjour Antwi-Afari, Waleed Umer, and Arnold Yu Lok Wong. Evaluation of physiological metrics as real-time measurement of physical fatigue in construction workers: state-of-the-art review. Journal of Construction Engineering and Management, 147(5):03121001, 2021.

[54] Fen Miao, Zeng-Ding Liu, Ji-Kui Liu, Bo Wen, Qing-Yun He, and Ye Li. Multisensor fusion approach for cuff-less blood pressure measurement. IEEE journal of biomedical and health informatics, 24(1):79–91, 2019.

[55] Cheng-Yu Tsai, He-in Cheong, Robert Houghton, Wen-Hua Hsu, Kang-Yun Lee, Jiunn-Horng Kang, Yi-Chun Kuan, Hsin-Chien Lee, Cheng-Jung Wu, Lok Yee Joyce Li, et al. Predicting fatigue-associated aberrant driving behaviors using a dynamic weighted moving average model with a long short-term memory network based on heart rate variability. Human Factors, 66(6):1681–1702, 2024.

[56] Ricardo Carvalho Amorim, João Aguiar Castro, João Rocha da Silva, and Cristina Ribeiro. A comparison of research data management platforms: architecture, flexible metadata and interoperability. Universal access in the information society, 16:851–862, 2017.

[57] Yu-Ren Zeng, YueShan Chang, and YouHao Fang. Data visualization for air quality analysis on big data platform. In 2019 international conference on system science and engineering (ICSSE), pages 313–317. IEEE, 2019.

[58] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu Prodan. A serverless real-time data analytics platform for edge computing. IEEE Internet Computing, 21(4):64–71, 2017.

[59] Pulkit Agrawal, Rajat Arya, Aanchal Bindal, Sandeep Bhatia, Anupriya Gagneja, Joseph Godlewski, Yucheng Low, Timothy Muss, Mudit Manu Paliwal, Sethu Raman, et al. Data platform for machine learning. In Proceedings of the 2019 international conference on management of data, pages 1803–1816, 2019.

[60] Taiwan IoT Technology Co., Ltd. Dht11 temperature and humidity sensor module, n.d. Accessed: 2025-06-09.

[61] Taiwan IoT Technology Co., Ltd. Analog sound level meter (decibel meter / noise meter) sensor, n.d. Accessed: 2025-06-09.

[62] OVIPHONE Technology Co., Ltd. W200pl, n.d. Accessed: 2025-06-09.

[63] Elecom Electronics Supply Co., Ltd. Rhf2s025 8-channels lorawan industrial gateway, n.d. Accessed: 2025-06-09.

[64] ASUSTeK Computer Inc. Asus 4g-ax56 dual-band wifi 6 lte router, n.d. Accessed: 2025-06-09.

[65] Taiwan IoT Technology Co., Ltd. Raspberry pi pico w microcontroller development board rp2040 dual-core processor 2.4ghz wireless wifi version, n.d. Accessed: 2025-06-09.

[66] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478, 2020.

[67] Kiyotoshi Matsuoka. Noise injection into inputs in back-propagation learning. IEEE Transactions on Systems, Man, and Cybernetics, 22(3):436–440, 1992.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98265-
dc.description.abstract營建業職業災害死亡率長年居高不下,其中「疲勞」被視為關鍵影響因子之一,尤以監造人員的疲勞風險長期未獲充分重視,且目前較少可實際應用之監測與預警系統架構。為此,本研究建構一套即時疲勞監測與預警系統,透過心率手環蒐集監造人員之心率資料,並以環境感測器結合 Raspberry Pi Pico W 量測工地之溫濕度與噪音。感測數據透過 LoRa 與 4G LTE 技術,結合 LoRaWAN、Socket、MQTT 等多種通訊協議進行即時傳輸,經本地端處理後寫入資料庫,並以資料庫作為資料串流中樞節點,進一步導入深度學習模型進行即時疲勞預測,並將預測結果回寫資料庫,以支援後續視覺化顯示與警示系統運作。

模型訓練方面,本研究針對40位來自不同工程案場之監造相關人員進行生理監測,並採用多種資料增強策略建立九種訓練資料集,藉此比較不同資料組合對模型效能之影響。最終疲勞分類任務準確率達約 77%,回歸任務之 R-square 約為 0.777,展現良好的預測準確性與泛化能力。系統亦結合 Apache Superset 建立即時資料視覺化平台,即時呈現心率變化、模型預測結果與環境參數。同時,整合 SMTP Server 與資料庫建立自動發信之預警機制,當疲勞等級預測超過臨界值時,能即時通知相關人員採取應對措施,降低因疲勞未即時處理所導致之職業災害風險。

本研究最終於工務所與工地現場進行兩次實地測試,分別驗證系統於室內與室外環境中之傳輸穩定性、模型預測效能、視覺化更新與警示機制運作情形。結果顯示,室內環境下系統運作穩定,但環境參數對疲勞監測的影響相對有限;而工地現場則雖易受 4G LTE 訊號影響,產生資料遺漏與延遲情形,但環境變化明顯,具備長期監測價值。

綜上所述,本研究成功整合即時通訊、深度學習、資料庫管理、視覺化分析與自動化預警技術,建置具即時性與實務應用潛力之營建現場疲勞監測系統,未來可進一步克服現有限制,擴展至多元工地場域,強化營建業之職業安全管理效能。
zh_TW
dc.description.abstractThe construction industry has long suffered from a high rate of occupational fatalities, with fatigue identified as one of the key contributing factors. In particular, the fatigue risks faced by supervisory personnel have been historically under-recognized, and there remains a lack of practical systems for monitoring and early warning. To address this gap, this study develops a real-time fatigue monitoring and alert system. Heart rate data from supervisory personnel is collected using wearable wristbands, while environmental parameters—such as temperature, humidity, and noise levels—are measured through sensors connected to a Raspberry Pi Pico W. The collected data is transmitted in real time via LoRa and 4G LTE technologies, integrated with multiple communication protocols including LoRaWAN, Socket, and MQTT. After local processing, the data is written into a central MySQL database, which serves as the core of the data stream pipeline. A deep learning model is then applied to perform real-time fatigue prediction, with results written back to the database to support further visualization and alert functions.

For model training, physiological data was collected from 40 supervisory personnel across various construction sites. Multiple data augmentation strategies were employed to create nine different training datasets, allowing for performance comparison across different configurations. The final classification model achieved an accuracy of approximately 77\%, while the regression task attained an R-squared value of 0.777—indicating strong predictive accuracy and generalizability. The system also incorporates Apache Superset to establish a real-time visualization platform, which displays heart rate trends, predicted fatigue levels, and environmental conditions. Additionally, an automated email alert system was developed using an SMTP server integrated with the database. When predicted fatigue levels exceed a predefined threshold, the system sends real-time notifications to relevant personnel, enabling timely interventions and reducing the likelihood of fatigue-related incidents.

Two field tests were conducted to evaluate system performance: one indoors at a site office and one outdoors at a bridge construction site. These tests verified the system’s transmission stability, model performance, visualization responsiveness, and alert functionality. Results showed stable operation in the indoor environment, although environmental parameters had limited impact on fatigue detection. In contrast, the outdoor setting exhibited greater variability in environmental conditions but occasionally experienced data loss or delay due to unstable 4G LTE signals—highlighting areas for future improvement.

In conclusion, this study successfully integrates real-time communication, deep learning, database management, data visualization, and automated alerting to establish a practical and responsive fatigue monitoring system for construction sites. The system demonstrates strong potential for deployment in diverse field environments and can significantly enhance occupational safety management in the construction industry.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:09:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:09:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i

摘要 iii

Abstract v

目次 ix

圖次 xiii

表次 xv

第一章 緒論 1
 1.1 研究背景與動機 1
 1.2 研究目的 4
 1.3 論文架構 6

第二章 文獻回顧 9
 2.1 疲勞評估生理指標 9
  2.1.1 常見生理指標應用 9
  2.1.2 儲備心率百分比 (%HRR) 10
 2.2 環境變化影響疲勞狀態 13
 2.3 數據傳輸協議 14
  2.3.1 MQTT (Message Queuing Telemetry Transport) 14
  2.3.2 Socket 16
  2.3.3 LoRa 與 LoRaWAN 18
 2.4 疲勞監測管理模式 20
  2.4.1 穿戴式感測技術 20
  2.4.2 疲勞監測系統 21
  2.4.3 深度學習疲勞預測 22
 2.5 數據分析與可視化 ETL 架構 24
 2.6 小結 25

第三章 疲勞監測系統架構及方法 27
 3.1 系統架構 27
 3.2 資料傳輸架構 28
  3.2.1 系統硬體設備 28
  3.2.2 數據傳輸流程 31
  3.2.3 資料處理 33
 3.3 資料庫應用 34
  3.3.1 MySQL Database 34
  3.3.2 資料儲存流程 35
 3.4 疲勞監測資料集 36
  3.4.1 資料來源 36
  3.4.2 資料集建立 39
  3.4.3 資料增強 41
 3.5 疲勞預測模型:Transformer model 45
  3.5.1 模型架構概述 45
  3.5.2 訓練流程 47
  3.5.3 評估指標 49
  3.5.4 即時預測 51
 3.6 資料串流平台 53
  3.6.1 Apache Superset 53
  3.6.2 資料庫連線 54
 3.7 即時預警系統 55
  3.7.1 Gmail SMTP Server 55
  3.7.2 警示發送流程 56
 3.8 小結 57

第四章 系統應用及現地實測結果分析 59
 4.1 疲勞預測 60
  4.1.1 資料集比較 60
  4.1.2 特徵選擇及模型參數 61
  4.1.3 模型預測性能 65
  4.1.4 文獻比較 72
 4.2 MySQL 數據管理 73
  4.2.1 即時傳輸中樞 73
  4.2.2 疲勞預測數據管理 74
 4.3 Superset 資料視覺化 75
  4.3.1 訓練資料分析 76
  4.3.2 即時監測資料 80
 4.4 即時疲勞預警系統 82
  4.4.1 警示觸發 82
 4.5 現地疲勞監測結果 83
  4.5.1 實驗場域及人員配置 83
  4.5.2 實地監測結果 85
 4.6 小結 97

第五章 結論與建議 99
 5.1 結論 99
 5.2 研究限制 100
 5.3 未來研究建議 101

參考文獻 103
附錄 A — 監造人員問卷調查表 113
-
dc.language.isozh_TW-
dc.subject疲勞監測zh_TW
dc.subject深度學習zh_TW
dc.subject資料視覺化zh_TW
dc.subject物聯網zh_TW
dc.subjectInternet of Thingsen
dc.subjectFatigue Monitoringen
dc.subjectDeep Learningen
dc.subjectData Visualizationen
dc.title工程監造人員疲勞即時監測與預警系統之研究zh_TW
dc.titleDevelopment of a Real-Time Fatigue Monitoring and Alert System for Construction Supervision Engineeren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林偲妘;林祐正;林楨中zh_TW
dc.contributor.oralexamcommitteeSzu-Yun Lin;Yu-Cheng Lin;Chen-Chung Linen
dc.subject.keyword疲勞監測,深度學習,資料視覺化,物聯網,zh_TW
dc.subject.keywordFatigue Monitoring,Deep Learning,Data Visualization,Internet of Things,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202502269-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf14.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved