請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張書瑋 | zh_TW |
| dc.contributor.advisor | Shu-Wei Chang | en |
| dc.contributor.author | 陳柏學 | zh_TW |
| dc.contributor.author | Po-Hsueh Chen | en |
| dc.date.accessioned | 2025-07-31T16:08:24Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] W. Song, et al., "Cross-scale biological models of species for future biomimetic composite design: A review," Coatings, vol. 11, no. 37, p. 1297, 2021, doi: 10.3390/coatings11111297.
[2] E. Daskalakis, et al., "Bone bricks: The effect of architecture and material composition on the mechanical and biological performance of bone scaffolds," ACS Omega, vol. 7, no. 9, pp. 7515–7530, 2022, doi: 10.1021/acsomega.1c05437. [3] M.-T. Hsieh, M. R. Begley, and L. Valdevit, "Architected implant designs for long bones: Advantages of minimal surface-based topologies," Materials & Design, vol. 207, p. 109838, 2021, doi: 10.1016/j.matdes.2021.109838. [4] B. Gervais, A. Vadean, M. Raison, and M. Brochu, "Failure analysis of a 316L stainless steel femoral orthopedic implant," Case Studies in Engineering Failure Analysis, vol. 5–6, pp. 30–38, 2016, doi: 10.1016/j.csefa.2015.12.001. [5] D. Chen, S. Kitipornchai, and J. Yang, "Dynamic response and energy absorption of functionally graded porous structures," Materials & Design, vol. 140, pp. 473–487, 2018, doi: 10.1016/j.matdes.2017.12.019. [6] J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models," Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020. [7] P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image Synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021. [8] S. E. Naleway, M. M. Porter, J. McKittrick, and M. A. Meyers, “Structural Design Elements in Biological Materials: Application to Bioinspiration,” Advanced Materials, vol. 27, no. 37, pp. 5455–5476, Oct. 2015, doi: 10.1002/adma.201502403. [9] B. Zhang, Q. Han, J. Zhang, Z. Han, S. Niu, and L. Ren, “Advanced bio-inspired structural materials: Local properties determine overall performance,” Materials Today, vol. 41, pp. 177–199, 2020, doi: 10.1016/j.mattod.2020.04.009. [10] Y. Chiang, et al, “Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana,” Composite Structures, vol. 262, p. 113349, 2021, doi: 10.1016/j.compstruct.2020.113349. [11] R. Gupta, A. K. Chaudhary, J. Kim, S. Kumar, and D. M. Kochmann, “Tough and Ductile Architected Nacre‐Like Cementitious Composites,” Advanced Functional Materials, vol. 34, no. 6, p. 2313906, 2024, doi: 10.1002/adfm.202313906. [12] L. Long, Z. Wang, and K. Chen, “Analysis of the hollow structure with functionally gradient materials of moso bamboo,” J. Wood Sci., vol. 61, pp. 569–577, 2015, doi: 10.1007/s10086-015-1504-9. [13] J. Xiang and J. Du, “Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading,” Materials Science and Engineering: A, vol. 696, pp. 283–289, 2017, doi: 10.1016/j.msea.2017.04.044. [14] P.-Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: Functional adaptations and bioinspired designs,” Prog. Mater. Sci., vol. 57, no. 8, pp. 1492–1704, 2012, doi: 10.1016/j.pmatsci.2012.03.001. [15] P.-Y. Chen et al., “Structure and mechanical properties of selected biological materials,” J. Mech. Behav. Biomed. Mater., vol. 1, no. 3, pp. 208–226, 2008, doi: 10.1016/j.jmbbm.2008.02.003. [16] M. A. Meyers, P.-Y. Chen, M. I. Lopez, Y. Seki, and A. Y. Lin, “Biological materials: a materials science approach,” J. Mech. Behav. Biomed. Mater., vol. 4, no. 5, pp. 626–657, Jul. 2011, doi: 10.1016/j.jmbbm.2010.08.005. [17] C. Audibert, J. Chaves-Jacob, J.-M. Linares, and Q.-A. Lopez, "Bio-inspired method based on bone architecture to optimize the structure of mechanical workpieces," Materials & Design, vol. 160, pp. 708–717, 2018, doi: 10.1016/j.matdes.2018.10.013. [18] F. Libonati, et al "Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites," Scientific Reports, vol. 9, Art. no. 6017, 2019, doi: 10.1038/s41598-019-39030-7. [19] H. Xu, et al. "Four-dimensional perspective on biomimetic design and fabrication of bone scaffolds for comprehensive bone regeneration," ACS Materials Letters, vol. 6, no. 9, pp. 4262–4281, Sep. 2024, doi: 10.1021/acsmaterialslett.4c00889. [20] U. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Bioinspired structural materials," Nature Materials, vol. 14, no. 1, pp. 23–36, 2015, doi: 10.1038/nmat4089. [21] X. Wang, et al, "Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review," Biomaterials, vol. 83, pp. 127–141, 2016, doi: 10.1016/j.biomaterials.2016.01.012. [22] F. Libonati, G. Gu, Z. Qin, L. Vergani, and M. Buehler, "Bone-inspired materials by design: Toughness amplification observed using 3D printing and testing," Advanced Engineering Materials, vol. 18, 2016, doi: 10.1002/adem.201600143. [23] F. Libonati, V. Cipriano, L. Vergani, and M. J. Buehler, "Computational framework to predict failure and performance of bone-inspired materials," ACS Biomaterials Science & Engineering, vol. 3, no. 12, pp. 3236–3243, 2017, doi: 10.1021/acsbiomaterials.7b00606. [24] M. Doube, et al, "Trabecular bone scales allometrically in mammals and birds," Proceedings of the Royal Society B: Biological Sciences, vol. 278, no. 1721, pp. 3067–3073, Oct. 2011, doi: 10.1098/rspb.2011.0069. [25] X. Zheng, X. Zhang, T. T. Chen, and I. Watanabe, "Deep learning in mechanical metamaterials: From prediction and generation to inverse design," Advanced Materials, vol. 35, no. 45, p. e2302530, Nov. 2023, doi: 10.1002/adma.202302530. [26] N. Karathanasopoulos and D. C. Rodopoulos, "Enhanced cellular materials through multiscale, variable-section inner designs: Mechanical attributes and neural network modeling," Materials, vol. 15, no. 10, Art. no. 3581, 2022, doi: 10.3390/ma15103581 [27] M. Maurizi, C. Gao, and F. Berto, "Inverse design of truss lattice materials with superior buckling resistance," npj Computational Materials, vol. 8, no. 1, p. 247, Nov. 2022, doi: 10.1038/s41524-022-00938-w. [28] B. Deng, A. Zareei, X. Ding, J. C. Weaver, C. H. Rycroft, and K. Bertoldi, "Inverse design of mechanical metamaterials with target nonlinear response via a neural accelerated evolution strategy," Advanced Materials, vol. 34, no. 41, Art. no. e2206238, Oct. 2022, doi: 10.1002/adma.202206238. [29] H. Wang, Y. Lyu, J. Jiang, and H. Zhu, "Data-driven inverse design of novel spinodoid bone scaffolds with highly matched mechanical properties in three orthogonal directions," Materials & Design, vol. 251, Art. no. 113697, 2025, doi: 10.1016/j.matdes.2025.113697. [30] J. Bastek, S. Kumar, B. Telgen, R. N. Glaesener, and D. M. Kochmann, “Inverting the structure–property map of truss metamaterials by deep learning,” Proc. Natl. Acad. Sci. U.S.A., vol. 119, no. 1, p. e2111505119, 2022, doi: 10.1073/pnas.2111505119. [31] A. Challapalli, D. Patel, and G. Li, “Inverse machine learning framework for optimizing lightweight metamaterials,” Materials & Design, vol. 208, p. 109937, 2021, doi: 10.1016/j.matdes.2021.109937. [32] S. Kumar, S. Tan, L. Zheng, et al., “Inverse-designed spinodoid metamaterials,” npj Comput. Mater., vol. 6, no. 73, 2020, doi: 10.1038/s41524-020-0341-6. [33] N. A. Alderete, N. Pathak, and H. D. Espinosa, “Machine learning assisted design of shape-programmable 3D kirigami metamaterials,” npj Comput. Mater., vol. 8, no. 191, 2022, doi: 10.1038/s41524-022-00873-w [34] X. Zheng, T. T. Chen, X. Guo, S. Samitsu, and I. Watanabe, "Controllable inverse design of auxetic metamaterials using deep learning," Materials & Design, vol. 211, p. 110178, 2021, doi: 10.1016/j.matdes.2021.110178 [35] X. Zheng, T. T. Chen, X. Jiang, M. Naito, and I. Watanabe, "Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices," Science and Technology of Advanced Materials, vol. 24, no. 1, 2023, doi: 10.1080/14686996.2022.2157682. [36] L. Wang, Y.-C. Chan, F. Ahmed, Z. Liu, P. Zhu, and W. Chen, "Deep generative modeling for mechanistic-based learning and design of metamaterial systems," Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113377, 2020, doi: 10.1016/j.cma.2020.113377. [37] R. K. Tan, N. L. Zhang, and W. Ye, "A deep learning–based method for the design of microstructural materials," Structural and Multidisciplinary Optimization, vol. 61, no. 4, pp. 1417–1438, Apr. 2020, doi: 10.1007/s00158-019-02424-2. [38] Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. CoRR, vol. abs/1411.1784. Retrieved from http://arxiv.org/abs/1411.1784. [39] D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," arXiv preprint arXiv:1312.6114, 2022. [Online]. Available: https://arxiv.org/abs/1312.6114. [40] I. J. Goodfellow, et al. "Generative Adversarial Networks," arXiv preprint arXiv:1406.2661, 2014. [Online]. Available: https://arxiv.org/abs/1406.2661. [41] Z. Shi, "AI Application to Generate an Expected Picture Using Keywords with Stable Diffusion," Journal of Artificial Intelligence Practice, vol. 6, pp. 66-71, 2023. doi: 10.23977/jaip.2023.060110 [42] J. Ho, A. Jain, and P. Abbeel, "Denoising Diffusion Probabilistic Models," CoRR, vol. abs/2006.11239, 2020. [Online]. Available: https://arxiv.org/abs/2006.11239. [43] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "High-Resolution Image Synthesis with Latent Diffusion Models," CoRR, vol. abs/2112.10752, 2021. [Online]. Available: https://arxiv.org/abs/2112.10752. [44] Zhu, M., Kanjiani, R., Lu, J., Choi, A., Ye, Q., & Zhao, L., "LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multi-modal Foundation Models," arXiv preprint arXiv:2406.14862, 2024. [Online]. Available: https://arxiv.org/abs/2406.14862. [45] Nichol, A., & Dhariwal, P., "Improved Denoising Diffusion Probabilistic Models," arXiv preprint arXiv:2102.09672, 2021. [Online]. Available: https://arxiv.org/abs/2102.09672. [46] Vlassis, N. N., & Sun, W., "Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties," Computer Methods in Applied Mechanics and Engineering, vol. 413, p. 116126, Aug. 2023, doi: 10.1016/j.cma.2023.116126. [47] Lejeune, E., "Mechanical MNIST: A benchmark dataset for mechanical metamodels," Extreme Mechanics Letters, vol. 36, p. 100659, 2020, doi: 10.1016/j.eml.2020.100659. [48] Z. Zou, J. Liu, K. Gao, D. Chen, J. Yang, and Z. Wu, "Inverse design of functionally graded porous structures with target dynamic responses," International Journal of Mechanical Sciences, vol. 280, p. 109530, 2024, doi: 10.1016/j.ijmecsci.2024.109530. [49] 蘇正順, "以電腦模擬計算骨骼微結構為啟發的高韌性複合材料", in 國立臺灣大學土木工程學, 台灣, 2024 [50] A. P. Thompson, et al, "LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales," Computer Physics Communications, vol. 271, p. 108171, 2022, doi: 10.1016/j.cpc.2021.108171. [51] G. Clavier, et al, "Computation of elastic constants of solids using molecular simulation: comparison of constant volume and constant pressure ensemble methods," Molecular Simulation, vol. 43, no. 17, pp. 1413–1422, 2017, doi: 10.1080/08927022.2017.1313418. [52] A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool," Modelling and Simulation in Materials Science and Engineering, vol. 18, no. 1, p. 015012, Dec. 2009, doi: 10.1088/0965-0393/18/1/015012. [53] Hasanvand, Arsalan. (2021). Bézier curve. [54] W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm," SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169, Jul. 1987, doi: 10.1145/37402.37422. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98259 | - |
| dc.description.abstract | 自然界中,不同物種為適應各自所處的嚴苛環境,演化出多樣化且獨特的骨骼結構,展現出截然不同的機械性質。這些自然形成的結構為工程領域提供了豐富的靈感與設計參考。然而,現今大多數的工程設計仍採用前向設計方式,即設計者預先建立幾何結構,再透過模擬或實驗來評估其機械性質。在面對特定力學需求時,前向設計往往需要經過大量的反覆試誤才能找到合適結構,不僅耗時且效率低落。相對而言,逆向設計則是根據目標性能條件,直接生成對應的結構,能夠大幅縮短設計迭代時間,提升開發效率。
本研究以來自 11 種不同物種的骨骼微結構為基礎,探討其幾何與力學行為之間的關聯,並發展結合生成模型的逆向設計方法。首先,在力學行為模擬方面,研究採用二維三角晶格彈簧之複合材料模型,預測不同幾何結構下的楊氏係數與韌性表現。隨後進一步擴展至三維結構,透過貝茲曲線將骨骼微結構圖像轉換為三維離散顆粒的單一孔隙材料模型,用以預測三維結構下的楊氏係數與比能量吸收表現,為實現逆向設計,本研究訓練了一個去噪擴散機率模型。該模型基於馬可夫鏈程序,分為前向與反向傳播兩階段,在前向過程中,逐步向骨骼微結構圖像添加高斯噪聲;而在反向過程中,模型學習如何從純噪聲中逐步還原並生成結構。於訓練過程中,我們將目標機械性質嵌入條件向量,使模型能夠根據給定的力學條件生成對應的結構。 透過本模型,可針對特定目標機械性質生成對應結構,且觀察其幾何分布時,發現模型能在相同性能條件下產生多樣幾何狀,顯著拓展結構設計空間。此外,於相同孔隙率條件下改變輸入性,可觀察模型如何透過幾何配置進行調整,以實現高韌性結構的生成策略。在三維逆向設計方面,模型不僅可根據輸入的機械性質生成骨骼微結構,同時亦可輸出對應的貝茲曲線,進一步構建出三維結構。 | zh_TW |
| dc.description.abstract | In nature, different species have evolved diverse and unique bone microstructures to adapt to their harsh environments, showing distinct mechanical properties. These naturally formed structures provide rich inspiration and design references for engineering. However, most current engineering designs still use a forward design approach, where designers first build geometric structures and then evaluate their mechanical performance through simulations or experiments. When facing specific mechanical requirements, forward design often requires a lot of trial and error to find suitable structures, which is time-consuming and inefficient. In contrast, inverse design generates corresponding structures based on target performance conditions, which can significantly reduce design iteration time and improve development efficiency.
This study is based on bone microstructures from 11 different species, aiming to explore the relationship between geometry and mechanical behavior, and to develop an inverse design method combined with a generative model. First, in mechanical behavior simulation, the study uses a 2D lattice spring composite model to predict Young’s modulus and toughness under different geometric structures. It is further extended to 3D by converting bone microstructure images into 3D particle-based models using Bezier curves, to predict Young’s modulus and specific energy absorption in 3D structures. To achieve inverse design, this study trains a denoising diffusion probabilistic model. This model is based on a Markov chain process, divided into forward and reverse propagation: in the forward process, Gaussian noise is gradually added to bone microstructures; in the reverse process, the model learns how to recover and generate structures from pure noise. During training, target mechanical properties are embedded into the condition vector, allowing the model to generate corresponding structures based on the given mechanical conditions. Through this model, structures can be generated for specific mechanical targets. When observing their geometric distribution, it is found that the model can produce various geometries under the same performance condition, greatly expanding the design space. Furthermore, when the porosity is kept constant, changing the input toughness allows observation of how the model adjusts the geometry to achieve higher toughness. In 3D inverse design, the model can not only generate bone microstructures according to mechanical inputs, but also output corresponding Bezier curves to build 3D structures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:08:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:08:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目次 vi 圖次 ix 表次 xx Chapter 1 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構 3 Chapter 2 文獻回顧 4 2.1 生物天然材料 4 2.2 骨頭微結構 5 2.3 逆向設計和生成式模型 6 Chapter 3 研究方法 11 3.1 骨頭微結構資料集 11 3.1.1 電腦斷層影像處理 11 3.1.2 幾何分析 12 3.2 彈性張量計算 14 3.3 模擬模型及參數設定 15 3.3.1 二維三角晶格彈簧 15 3.3.2 二維拉伸模擬 16 3.3.3 三維離散顆粒模型 17 3.3.4 三維壓縮模擬 20 3.4 條件式擴散模型 21 3.4.1 前向及反向傳播 21 3.4.2 去噪模型及條件嵌入 23 3.4.3 將貝茲曲線整合至多通道 24 3.5 誤差計算 25 Chapter 4 模型訓練和生成結果分析 26 4.1 資料集幾何特徵及力學分布 26 4.1.1 多物種資料集幾何特徵 26 4.1.2 多物種資料集力學分布 32 4.1.3 貝茲曲線轉三維模型 35 4.1.4 三維資料集力學分布 38 4.2 條件去噪擴散機率模型之表現 41 4.2.1 二維條件生成:體積分數與楊氏模數 41 4.2.2 二維條件生成:體積分數與韌性 47 4.2.3 三維條件生成:孔隙率與楊氏模數 81 4.2.4 三維條件生成:孔隙率與比能量吸收 87 Chapter 5 結論和未來展望 95 5.1 結論 95 5.2 未來展望 97 參考文獻 98 附錄A 以體積分數和楊式模數做為條件 105 附錄B 以體積分數和韌性做為條件 106 附錄C 以孔隙率和楊氏係數做為條件 111 附錄D 以孔隙率和比吸收能量做為條件 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 骨骼微結構 | zh_TW |
| dc.subject | 逆向設計 | zh_TW |
| dc.subject | 幾何特徵 | zh_TW |
| dc.subject | 二維三角晶格彈簧 | zh_TW |
| dc.subject | 三維顆粒模型 | zh_TW |
| dc.subject | 條件式去噪機率擴散模型 | zh_TW |
| dc.subject | inverse design | en |
| dc.subject | bone microstructure | en |
| dc.subject | geometric features | en |
| dc.subject | conditional denoising diffusion probabilistic model | en |
| dc.subject | 3D particle-based model | en |
| dc.subject | 2D lattice spring model | en |
| dc.title | 利用條件去噪擴散機率模型生成具目標機械性質的結構 | zh_TW |
| dc.title | Structure Generation for Target Mechanical Properties Using Conditional Denoising Diffusion Probabilistic Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊杉;劉立偉;周佳靚 | zh_TW |
| dc.contributor.oralexamcommittee | Chuin-Shan Chen;Li-Wei Liu;Chia-Ching Chou | en |
| dc.subject.keyword | 骨骼微結構,逆向設計,幾何特徵,二維三角晶格彈簧,三維顆粒模型,條件式去噪機率擴散模型, | zh_TW |
| dc.subject.keyword | bone microstructure,geometric features,inverse design,2D lattice spring model,3D particle-based model,conditional denoising diffusion probabilistic model, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202502209 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 24.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
