Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林政道zh_TW
dc.contributor.advisorCheng-Tao Linen
dc.contributor.author孫榮田zh_TW
dc.contributor.authorRung-Tian Suenen
dc.date.accessioned2025-07-31T16:07:18Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citation傅木錦、廖啟政、徐夢婷 (2010) 陽明山國家公園包籜矢竹物候及採筍效應之研究。內政部營建署陽明山國家公園委託報告。
吳福忠、魯葉江 (2005) 缺苞箭竹密度對養分元素貯量、積累與分配動態的影響。生態學報, 25(7): 1663–1669。
呂錦明 (2024) 臺灣竹指南。社團法人台灣竹會。第24–37頁.
徐國士 (1986) 陽明山國家公園台灣矢竹生態之調查研究。內政部營建署陽明山國家公園委託報告。
林嘉音、林葉信宏、葉國楨、常怡雍 (2022) 植物逆境反應的預啟(priming)與記憶。臺灣農業化學與食品科學 60(2): 68–72. https://doi.org/10.6578/TJACFS.202206_60(2).0004
林裕仁 (2023) 竹林碳匯估算的基本概念。林業研究專刊 第30卷 第5期。 https://www.tfri.gov.tw/News_Content2.aspx?n=7499&s=22647
洪千祐和顏添明 (2015) 以過去發表資料為基礎分析臺灣地區人工針葉樹林、闊葉樹林和竹林之碳吸存量。林業研究季刊 37(4): 259–268。
蔡呈奇 (2008) 陽明山國家公園全區土壤分析調查。內政部營建署陽明山國家公園委託報告。
賴明洲和李瑞宗 (1991) 陽明山國家公園鹿角坑溪生態保護區植物生態調查。內政部營建署陽明山國家公園委託報告。
邱祈榮 (2023) 地面光達於都市林木材積式之建構。航測及遙測學刊 28(3): 177–193。 https://doi.org/10.6574/JPRS.202309_28(3).0003
陳文恭和蔡清彥 (1983) 陽明山國家公園之氣候。內政部營建署陽明山國家公園委託報告。
陳財輝 (2021) 前瞻臺灣竹林永續經營之道。農傳媒。 https://www.agriharvest.tw/archives/59718
陳財輝、鍾欣芸、汪大雄、王經文 (2011) 包籜矢竹之生長、生物量及竹筍生產。中華林學季刊 44(2): 183–192。https://doi.org/10.30064/QJCF.201106.0003
韓中梅和黃生 (2000) 陽明山地區矢竹族群生態及遺傳研究。內政部營建署陽明山國家公園委託報告。
顏江河 (2007) 陽明山國家公園火山土壤成份與植物適應性之研究。內政部營建署陽明山國家公園委託報告。
顏添明 (2011) 竹林碳吸存潛力之探討。林業研究專訊 18(1): 19–22。 https://doi.org/10.29953/FRN.201102.0006
高毓斌 (1985) 台灣孟宗竹林之生產力與生物性養分循環。博士論文,國立台灣大學。https://hdl.handle.net/11296/bxq36p
黃生 (2004) 陽明山區包籜矢竹更新監測及繁殖生態研究。內政部營建署陽明山國家公園委託報告。
黃冠理 (2010) 以空載光達資料推估森林生物量與碳儲存量。碩士論文,屏東科技大學。https://doi.org/10.6346/NPUST.2010.00201
Bai, S., Zhou, G., Wang, Y., Liang, Q., Chen, J., Cheng, Y., & Shen, R. (2013). Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodiversity Science, 21(3), 288. https://doi.org/10.3724/SP.J.1003.2013.08258
Brenya, E., Chen, Z.-H., Tissue, D., Papanicolaou, A., & Cazzonelli, C. I. (2020). Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC Plant Biology, 20(1), 548. https://doi.org/10.1186/s12870-020-02759-9
Brenya, E., Pervin, M., Chen, Z.-H., Tissue, D. T., Johnson, S., Braam, J., & Cazzonelli, C. I. (2022). Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. Plant, Cell & Environment, 45(4), 989–1010. https://doi.org/10.1111/pce.14252
Chauhan, O., Unni, L., Chitravathi, K., Pakalapati, S., & Batra, H. (2016). Bamboo shoots: Composition, nutritional value, therapeutic role and product development for value addition. International Journal of Food and Fermentation Technology, 6, 1. https://doi.org/10.5958/2277-9396.2016.00021.0
Coutand, C., Dupraz, C., Jaouen, G., Ploquin, S., & Adam, B. (2008). Mechanical stimuli regulate the allocation of biomass in trees: Demonstration with young Prunus avium trees. Annals of Botany, 101(9), 1421–1432. https://doi.org/10.1093/aob/mcn054
Ding, Y., Fromm, M., Avramova, Z., (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nature Communications, 3(1), 740 https://doi.org/10.1038/ncomms1732
Garcia, J. C. C., Arango, A. M. A., & Trinh, L. (2023). The potential of bamboo forests as a carbon sink and allometric equations for estimating their aboveground biomass. Environment Development and Sustainability. https://doi.org/10.1007/s10668-023-03460-1
Griscom, B. W., & Ashton, P. M. S. (2003). Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management, 175(1), 445–454. https://doi.org/10.1016/S0378-1127(02)00214-1
Hycza, T., Kamińska, A., Stereńczak, K., (2021). The use of remote rensing rata to estimate land area with forest vegetation cover in the context of selected forest definitions. Forests, 12(11), 1489. https://doi.org/10.3390/f12111489
Iroegbu, A. O. C., & Ray, S. S. (2021). Bamboos: From bioresource to sustainable materials and chemicals. Sustainability, 13(21), 12200. https://doi.org/10.3390/su132112200
Kleinhenz, V., & Midmore, D. (2001). Aspects of bamboo agronomy. CQUniversity. https://acquire.cqu.edu.au/articles/chapter/Aspects_of_bamboo_agronomy/13461272/2
Kudo, G., Amagai, Y., Hoshino, B., & Kaneko, M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: Pattern of expansion and impact on species diversity. Ecology and Evolution, 1(1), 85–96. https://doi.org/10.1002/ece3.9
Kudo, G., Kawai, Y., Amagai, Y., & Winkler, D. E. (2017). Degradation and recovery of an alpine plant community: Experimental removal of an encroaching dwarf bamboo. Alpine Botany, 127(1), 75–83. https://doi.org/10.1007/s00035-016-0178-2
Kulawardhana, R. W., Popescu, S. C., Feagin, R. A., (2017). Airborne lidar remote sensing applications in non-forested short stature environments: A review. Annals of Forest Research, 60(1), 173-196. https://doi.org/10.15287/afr.2016.719
Li, L.-E., Yen, T.-M., & Lin, Y.-J. (2024). A generalized allometric model for predicting aboveground biomass across various bamboo species. Biomass and Bioenergy, 184, 107215. https://doi.org/10.1016/j.biombioe.2024.107215
Lieurance, D., Cooper, A., Young, A. L., Gordon, D. R., & Flory, S. L. (2018). Running bamboo species pose a greater invasion risk than clumping bamboo species in the continental United States. Journal for Nature Conservation, 43, 39–45. https://doi.org/10.1016/j.jnc.2018.02.012
Lisańczuk, M., Mitelsztedt, K., Parkitna, K., Krok, G., Stereńczak, K., Wysocka-Fijorek, E., Miścicki, S. (2020). Influence of sampling intensity on performance of two-phase forest inventory using airborne laser scanning. Forest Ecosystems, 7(1), 65. https://doi.org/10.1186/s40663-020-00277-6
Lynch, T. M., & Lintilhac, P. M. (1997). Mechanical signals in plant development: A new method for single cell studies. Developmental Biology, 181(2), 246–256. https://doi.org/10.1006/dbio.1996.8462
Okutomi, K., Shinoda, S., & Fukuda, H. (1996). Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 7(5), 723–728. https://doi.org/10.2307/3236383
Paudyal, K., Li, Y., Trinh, T. L., Adhikari, S., Lama, S., & Bhatta, K. P. (2022). Ecosystem Services from Bamboo Forests: Key Findings, Lessons Learnt and Call for Actions from Global Synthesis [Working Paper]. https://cgspace.cgiar.org/handle/10568/118098
Potocka, I., & Szymanowska-Pułka, J. (2018). Morphological responses of plant roots to mechanical stress. Annals of Botany, 122(5), 711–723. https://doi.org/10.1093/aob/mcy010
Rother, D. C., Alves, K. J. F., & Pizo, M. A. (2013). Avian assemblages in bamboo and non-bamboo habitats in a tropical rainforest. Emu-austral Ornithology, 113(1), 52–61. https://doi.org/10.1071/MU12017
Wang, B., Wang, J., Zhao, H., & Zhao, H. (2006). Stress induced plant resistance and enzyme activity varying in cucumber. Colloids and Surfaces B: Biointerfaces, 48(2), 138–142. https://doi.org/10.1016/j.colsurfb.2006.01.018
Xu, Q.-F., Liang, C.-F., Chen, J.-H., Li, Y.-C., Qin, H., & Fuhrmann, J. J. (2020). Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecology and Conservation, 21, e00787. https://doi.org/10.1016/j.gecco.2019.e00787
Yang, Q.-P., Guang-Yao, Y., Qing-Ni, S., Jian-Min, S., Ming, O., Hong-Yan, Q., Fang, A., & Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang 330045, China. (2015). Ecological studies on bamboo expansion: Process, consequence and mechanism. Chinese Journal of Plant Ecology, 39(1), 110–124. https://doi.org/10.17521/cjpe.2015.0012
Yeasmin, L., Ali, M. N., Gantait, S., & Chakraborty, S. (2015). Bamboo: An overview on its genetic diversity and characterization. Biotech, 5(1), 1–11. https://doi.org/10.1007/s13205-014-0201-5
Yen, T.-M., Ji, Y.-J., & Lee, J.-S. (2010). Estimating biomass production and carbon storage for a fast-growing Makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260(3), 339–344. https://doi.org/10.1016/j.foreco.2010.04.021
Yen, T.-M., & Lee, J.-S. (2011). Comparing aboveground carbon sequestration between Moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261(6), 995–1002. https://doi.org/10.1016/j.foreco.2010.12.015
Yen, T.-M., Sun, P.-K., & Li, L.-E. (2023). Predicting Aboveground Biomass and Carbon Storage for Ma Bamboo (Dendrocalamus latiflorus Munro) Plantations. Forests, 14(4), Article 4. https://doi.org/10.3390/f14040854
Zheng, A., & Lv, J. (2023a). Spatial patterns of bamboo expansion across scales: How does Moso bamboo interact with competing trees? Landscape Ecology. https://doi.org/10.1007/s10980-023-01669-z
Zheng, A., & Lv, J. (2023b). Spatial patterns of bamboo expansion across scales: How does Moso bamboo interact with competing trees? Landscape Ecology. https://doi.org/10.1007/s10980-023-01669-z
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98254-
dc.description.abstract近年來氣候變遷下,竹類因具有較高的碳吸存潛力而成為碳匯管理的重要對象。然而,竹類以地下莖入侵原生植群與林地,引發生態失衡的風險需透過更完善的管理措施進行預防。為探討機械性逆境是否可抑制竹林擴張,本研究以陽明山包籜矢竹擴張較明顯的推移帶交界處,透過衛星影像判釋與現場勘查設定試驗樣區,針對包籜矢竹地下莖施加束紮壓力(約6–7 kg),來模擬竹類地下莖受到機械性逆境後,其竹桿地上部生物量與竹筍生長之影響。逆境處理包含60枝竹桿,透過人工測量與光達掃描同步調查基徑與稈高,以異速生長方程式推估生物量。
結果顯示匍匐式地下莖(creeping rhizomes)遭受機械性壓力之竹稈地上部生物量未顯著受影響;但竹筍發筍模式呈現多項顯著的差異、筍地徑及筍高的生長皆低於對照組,且死亡率亦高於對照組,表明推移帶交界地下莖遭受機械性壓力之竹叢,其竹筍發育生長受到抑制。發筍曲線相對於機械性壓力形成的逆境曲線在時間和空間上的互動變化研究結果表明,發筍曲線最終沒有超過逆境曲線,並且遠離了逆境曲線(即遠離樹木)。綜合推移帶交界處的筍因遭受機械性壓力,導致其發育生長受到抑制的效應,整體而論,本研究結果指出,對推移帶交界匍匐地下莖施加機械性壓力雖不影響竹稈碳吸存生物量,但顯著抑制竹筍生長與擴張方向,顯示使用本策略具有控制竹林擴張的潛力,並能提供一個能夠穩定原生林與竹林推移帶的永續管理模式。
zh_TW
dc.description.abstractIn recent years, under climate change, bamboo has become an important target for carbon sink management due to its high carbon storage potential. However, the risk of bamboo invading native vegetation and forests with rhizomes, causing ecological imbalance, needs to be prevented through more comprehensive management measures. To investigate whether mechanical stress can inhibit bamboo forest expansion, this study used satellite image interpretation and field surveys to set up experimental plots at the junction of the ecotone where the expansion of the Pseudosasa usawae was more obvious in Yangmingshan. Binding pressure (about 6-7 kg) was applied to the rhizomes of the Pseudosasa usawae to simulate the effects of mechanical stress on the aboveground biomass of bamboo stems and bamboo shoot growth. The stress treatment included 60 bamboo culms, and the base diameter and culm height were investigated simultaneously through manual measurement and lidar scanning, and the biomass was estimated using the allometric growth equation. The results showed that the aboveground biomass of bamboo culms subjected to mechanical stress on creeping rhizomes was not significantly affected; however, the shoot development pattern showed many significant differences, the growth of shoot diameter and shoot height were lower than those in the control group, and the mortality rate was also higher than that in the control group, indicating that the development and growth of bamboo shoots in bamboo clumps subjected to mechanical stress on the rhizomes at the ecotone were inhibited. The results of the study on the interactive changes of the shoot growth curve relative to the adversity curve formed by mechanical stress in time and space showed that the shoot growth curve did not exceed the adversity curve in the end and moved away from the adversity curve (that is, away from the trees). The shoots at the junction of the comprehensive ecotone are subjected to mechanical stress, which leads to the inhibition of their development and growth. Overall, the results of this study indicate that although the mechanical stress applied to the creeping rhizomes at the junction of the ecotone does not affect the carbon storage biomass of the bamboo culms, it significantly inhibits the growth and expansion direction of bamboo shoots, indicating that the use of this strategy has the potential to control the expansion of bamboo forests and can provide a sustainable management model that can stabilize native forests and bamboo forest ecotones.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:07:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:07:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 ix
前言 1
第一章 文獻回顧 3
第一節、竹林與樹林間生態推移帶 3
第二節、機械性逆境下植物生理反應 7
第三節、包籜矢竹相關研究 8
第四節、地面光達掃描推估竹桿生物量 11
第二章 研究材料與方法 13
第一節、樣區設置 13
(一)、區域及區塊選擇方法 13
(二)、研究樣區選定與設置 14
第二節、地下莖逆境設置 15
第三節、調查與分析方法 16
(一)、自然環境評估 16
(二)、筍生長 19
(三)、竹類擴張動態變化 21
第三章 結果與討論 23
第一節、竹稈生物量 23
(一)、人工調查與TLS測量生物量 23
(二)、竹稈生物量變化 24
第二節、筍生長 25
(一)、發筍模式 25
(二)、筍死亡率 27
(三)、筍地徑 27
(四)、筍高 29
第三節、竹類擴張動態變化 31
第四節、綜合討論 34
(一)、逆境對竹稈地上部生物量 34
(二)、逆境對筍生長 35
(三)、逆境對竹類擴張 37
總結 39
參考文獻 40
附錄 46
附錄1. A樣區發筍位置、逆境施作位置及竹稈位置座標化 46
附錄2. B樣區發筍位置、逆境施作位置及竹稈位置座標化 46
附錄3. 樣區土壤質地分析表 47
附錄4. 公式(2)推導 48
(一)、竹稈生物量各項量測數據 48
(二)、公式(2)參數計算 49
附錄5. 光達掃描樣區造影 51
-
dc.language.isozh_TW-
dc.subject推移帶zh_TW
dc.subject機械性壓力zh_TW
dc.subject匍匐式地下莖zh_TW
dc.subject生物量zh_TW
dc.subject包籜矢竹zh_TW
dc.subjectPseudosasa usawaeen
dc.subjectbiomassen
dc.subjectcreeping rhizomeen
dc.subjectecotoneen
dc.subjectmechanical stressen
dc.title評估機械性壓力對包籜矢竹生物量與生長之影響zh_TW
dc.titleEvaluating the Impact of Mechanical Stress on Biomass and Growth of Pseudosasa usawaeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱清安;陳財輝zh_TW
dc.contributor.oralexamcommitteeChing-An Chiu;Cai-Hui Chenen
dc.subject.keyword機械性壓力,推移帶,包籜矢竹,生物量,匍匐式地下莖,zh_TW
dc.subject.keywordmechanical stress,ecotone,Pseudosasa usawae,biomass,creeping rhizome,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202502406-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved