請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔 | zh_TW |
| dc.contributor.advisor | Ying-Chieh Chan | en |
| dc.contributor.author | 彭子庭 | zh_TW |
| dc.contributor.author | Tsu-Ting Peng | en |
| dc.date.accessioned | 2025-07-31T16:06:26Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] P. Zheng, Y. Liu, H. Wu, H. Wang, Non-invasive infrared thermography technology for thermal comfort: A review. Building and Environment 248 (2024).
[2] A. Bueno, A. de Paula Xavier, E. Broday, Evaluating the Connection between Thermal Comfort and Productivity in Buildings: A Systematic Literature Review. Buildings 11 (2021). [3] Z. Ma, J. Wang, S. Ye, R. Wang, F. Dong, Y. Feng, Real-time indoor thermal comfort prediction in campus buildings driven by deep learning algorithms. Journal of Building Engineering 78 (2023). [4] ASHRAE, ANSI/ASHRAE Standard 55-2023: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2023. [5] P.O. Fanger, Thermal Comfort: Analysis and Applications in Environmental Engineering, Danish Technical Press, Copenhagen Denmark, 1970. [6] P. Höppe, Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings 34 (2002) 661-665. [7] H. Choi, H. Na, T. Kim, T. Kim, Vision-based estimation of clothing insulation for building control: A case study of residential buildings. Building and Environment 202 (2021). [8] G. Liu, Zhong, H., Ji, Y., Zhang, Y., Jiang, S., & Hu, S., Comparison and correction on calculation methods of clothing insulation based on thermal comfort. Energy and Built Environment (2024). [9] W. Zhao, D. Chow, S. Sharples, The relationship between thermal environments and clothing insulation for rural low-income residents in China in winter. IOP Conference Series: Earth and Environmental Science 329 (2019). [10] S. Zafarmandi, A. Matzarakis, Investigating thermal comfort indices in relation to clothing insulation value: A survey of an outdoor space in Tehran, Iran. Sustainable Cities and Society 118 (2025). [11] J. Liu, I.W. Foged, T.B. Moeslund, Clothing Insulation Rate and Metabolic Rate Estimation for Individual Thermal Comfort Assessment in Real Life. Sensors (Basel) 22 (2022). [12] A. Aryal, B. Becerik-Gerber, A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor. Building and Environment 160 (2019). [13] K. Li, W. Li, F. Liu, W. Xue, Non-invasive human thermal comfort assessment based on multiple angle/distance facial key-region temperatures recognition. Building and Environment 246 (2023). [14] A. Medina, J.I. Méndez, P. Ponce, T. Peffer, A. Meier, A. Molina, Using Deep Learning in Real-Time for Clothing Classification with Connected Thermostats. Energies 15 (2022). [15] ISO, ISO7730:2005: Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, 2005. [16] A.P. Gagge, A.P. Fobelets, L. Berglund, A standard predictive index of human response to the thermal environment. ASHRAE Transactions 92 (1986) 709–731. [17] D. Fiala, K.J. Lomas, M. Stohrer, Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45 (2001) 143-159. [18] F. Binarti, M.D. Koerniawan, S. Triyadi, S.S. Utami, A. Matzarakis, A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Climate 31 (2020). [19] C. Ekici, I. Atilgan, A comparison of suit dresses and summer clothes in the terms of thermal comfort. J Environ Health Sci Eng 11 (2013) 32. [20] J.F. Nicol, M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings 34 (2002) 563-572. [21] A. Das, R. Alagirusamy, P. Kumar, Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction. AUTEX Research Journal 11 (2011) 54-60. [22] Z.N. Disci, R. Lawrence, S. Sharples, Impact of the Climate Background of Students on Thermal Perception: Implications for Comfort and Energy Use in University Lecture Theatres. Buildings 14 (2024). [23] B. Yang, X. Li, Y. Hou, A. Meier, X. Cheng, J.-H. Choi, F. Wang, H. Wang, A. Wagner, D. Yan, A. Li, T. Olofsson, H. Li, Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review. Energy and Buildings 224 (2020). [24] N. Morresi, V. Cipollone, S. Casaccia, G.M. Revel, Measuring thermal comfort using wearable technology in transient conditions during office activities. Measurement 224 (2024). [25] S.A. Mansi, I. Pigliautile, C. Porcaro, A.L. Pisello, M. Arnesano, Application of wearable EEG sensors for indoor thermal comfort measurements. Acta Imeko 10 (2021). [26] A. Ghahramani, Q. Xu, S. Min, A. Wang, H. Zhang, Y. He, A. Merritt, R. Levinson, Infrared-Fused Vision-Based Thermoregulation Performance Estimation for Personal Thermal Comfort-Driven HVAC System Controls. Buildings 12 (2022). [27] Y. Wang, W. Duan, J. Li, D. Shen, P. Duan, Thermal-Adaptation-Behavior-Based Thermal Sensation Evaluation Model with Surveillance Cameras. Sensors (Basel) 24 (2024). [28] S. Van Craenendonck, L. Lauriks, C. Vuye, J. Kampen, A review of human thermal comfort experiments in controlled and semi-controlled environments. Renewable and Sustainable Energy Reviews 82 (2018) 3365-3378. [29] H.G. Chen, Andrew; Girod, Bernd, Describing Clothing by Semantic Attributes, in: A.L. Fitzgibbon, Svetlana; Perona, Pietro; Sato, Yoichi; Schmid, Cordelia (Ed.), 2012. [30] S.Y. Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang, Fashion Landmark Detection in the Wild, in: A.L. Fitzgibbon, Svetlana; Perona, Pietro; Sato, Yoichi; Schmid, Cordelia (Ed.), 2016. [31] Z. Liu, P. Luo, S. Qiu, X. Wang, X. Tang, Deepfashion: Powering robust clothes recognition and retrieval with rich annotations, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1096-1104. [32] H.R. Xiao, Kashif; Vollgraf, Roland, Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv (2017) arXiv:1708.07747. [33] R.Z. Yuying Ge, Lingyun Wu, Xiaogang Wang, Xiaoou Tang, Ping Luo, DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images. (2019). [34] J. Liu, I.W. Foged, T.B. Moeslund, Automatic estimation of clothing insulation rate and metabolic rate for dynamic thermal comfort assessment. Pattern Analysis and Applications 25 (2021) 619-634. [35] E.J. Choi, B.R. Park, N.H. Kim, J.W. Moon, Effects of thermal comfort-driven control based on real-time clothing insulation estimated using an image-processing model. Building and Environment 223 (2022). [36] H. Choi, B. Jeong, J. Lee, H. Na, K. Kang, T. Kim, Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control. Building and Environment 221 (2022). [37] M. De Carli, B.W. Olesen, A. Zarrella, R. Zecchin, People's clothing behaviour according to external weather and indoor environment. Building and Environment 42 (2007) 3965-3973. [38] J. Park, H. Choi, D. Kim, T. Kim, Development of novel PMV-based HVAC control strategies using a mean radiant temperature prediction model by machine learning in Kuwaiti climate. Building and Environment 206 (2021). [39] F. Wang, W. Shi, Y. Lu, G. Song, R.M. Rossi, S. Anaheim, Effects of moisture content and clothing fit on clothing apparent ‘wet’ thermal insulation: A thermal manikin study. Textile Research Journal 86 (2015) 57-63. [40] J. Kwon, J. Choi, The relationship between environmental temperature and clothing insulation across a year. Int J Biometeorol 56 (2012) 887-893. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98250 | - |
| dc.description.abstract | 本研究旨在探討多角度衣著辨識對衣著隔熱值估算之影響,並建立一套結合氣象資料的調整模型,以提升熱舒適度評估的準確性。熱舒適度為反映室內環境品質的重要指標,而衣著隔熱值是熱舒適度評估模型中的個人參數之一。現行研究常依據季節設定固定衣著隔熱值,然而實際穿著狀況會受到文化背景、個人習慣與氣候條件等影響,導致評估結果與實際情形產生落差。
本研究使用 YOLOv7 模型,並以 DeepFashion2 資料集進行訓練,以辨識 13 種常見服裝類型並估算衣著隔熱值。實驗設計中,受試者進行 360 度旋轉,由四部固定攝影機於不同高度與角度同步拍攝影像,分析不同視角對辨識結果的影響。結果顯示,側面與高角度影像中辨識誤差較高,顯示視角變化對衣著隔熱值估算具有重要影響。此外,模型僅能辨識可見的外層衣物,無法辨識內層衣物,導致多層穿著普遍低估衣著隔熱值。 為修正上述偏差,本研究建立了一套衣著隔熱值調整模型,整合天氣資料與辨識結果,透過深度神經網路進行修正預測。模型在交叉驗證中展現穩定預測能力,並於實際監視器安裝位置所拍攝之正面影像進行初步測試,顯示其具備應用於真實場域的可行性,為未來智慧建築中的熱舒適度即時管理提供參考。 | zh_TW |
| dc.description.abstract | This study explores the impact of multi-view clothing recognition on clothing insulation estimation and develops an adjustment model that integrates meteorological data to enhance prediction accuracy. Thermal comfort is an important indicator reflecting indoor environmental quality, and clothing insulation is one of the personal parameters in thermal comfort models. Existing studies often assign fixed clothing insulation based on seasons; however, actual clothing conditions are influenced by cultural background, personal habits, and climate, which may result in differences between the estimated and actual conditions.
The YOLOv7 model was trained using the DeepFashion2 dataset to recognize 13 common clothing types and estimate clothing insulation. During the experiment, participants performed a 360° rotation while being photographed by four fixed cameras positioned at different heights and angles. The results show that recognition errors are notably higher in side and high-angle views, indicating that viewing angle plays a significant role in clothing insulation estimation. In addition, the model can only detect visible outer garments and is unable to identify inner layers, which often leads to underestimation of insulation values in multilayer clothing scenarios. To address these limitations, a deep neural network adjustment model was developed by integrating meteorological data and recognition results. The model demonstrated stable performance through cross-validation and was tested using front-view images captured at typical surveillance camera positions, showing its potential for real-world application. This study offers a practical reference for real-time thermal comfort management in smart buildings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:06:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:06:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii ABSTRACT iv CONTENT vi LIST OF FIGURES ix LIST OF TABLES xi DENOTATION xii Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research objectives 3 1.3 Research scope 4 1.4 Thesis structure 5 Chapter 2 Literature Review 6 2.1 Thermal comfort assessment 6 2.1.1 Thermal comfort indices 6 2.1.2 Thermal comfort detection method 10 2.2 Clothing insulation estimation 12 2.2.1 Clothing insulation (Icl) 12 2.2.2 Non-invasive clothing detection method 14 2.2.3 Meteorological Data 16 2.3 Research gap 18 Chapter 3 Methodology 19 3.1 Data collection 19 3.2 Clothing recognition model 24 3.3 Multi-view clothing recognition method 30 3.4 Clothing insulation adjustment model 36 3.5 Clothing insulation adjustment method 38 3.6 Evaluation Metrics 40 3.6.1 Clothing recognition model 40 3.6.2 Clothing insulation adjustment model 41 Chapter 4 Results and discussion 43 4.1 Data analysis 43 4.2 Clothing recognition model performance 46 4.3 Evaluation of multi-view clothing recognition 52 4.4 Clothing insulation adjustment model performance 61 4.5 Evaluation of clothing insulation adjustment 64 4.6 Limitation 66 Chapter 5 Conclusion 68 Reference 73 Appendix A. Full content of the questionnaire 80 | - |
| dc.language.iso | en | - |
| dc.subject | 衣著隔熱值 | zh_TW |
| dc.subject | 熱舒適度 | zh_TW |
| dc.subject | 智慧建築 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 影像辨識 | zh_TW |
| dc.subject | image recognition | en |
| dc.subject | deep learning | en |
| dc.subject | smart building | en |
| dc.subject | clothing insulation | en |
| dc.subject | thermal comfort | en |
| dc.title | 基於影像辨識與氣象資料之熱舒適度衣著隔熱值模型 | zh_TW |
| dc.title | Clothing Insulation Estimation for Thermal Comfort Model Using Image Recognition and Meteorological Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝依芸;紀乃文 | zh_TW |
| dc.contributor.oralexamcommittee | I-Yun Lisa Hsieh;Nai-Wen Chi | en |
| dc.subject.keyword | 熱舒適度,衣著隔熱值,影像辨識,深度學習,智慧建築, | zh_TW |
| dc.subject.keyword | thermal comfort,clothing insulation,image recognition,deep learning,smart building, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202502783 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
