請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98236完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐丞志 | zh_TW |
| dc.contributor.advisor | Cheng-Chih Hsu | en |
| dc.contributor.author | 洪鈺 | zh_TW |
| dc.contributor.author | Yu Hong | en |
| dc.date.accessioned | 2025-07-30T16:26:48Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1. Hay SI, Battle KE, Pigott DM, Smith DL, Moyes CL, Bhatt S, et al. Global mapping of infectious disease. Philos Trans R Soc B Biol Sci . 2013;368(1614):20120250. doi:10.1098/rstb.2012.0250
2. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet . 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0 3. Zhang C, Fu X, Liu Y, Zhao H, Wang G. Burden of infectious diseases and bacterial antimicrobial resistance in China: a systematic analysis for the global burden of disease study 2019. Lancet Reg Health West Pac . 2023;43:100972. doi:10.1016/j.lanwpc.2023.100972 4. Young RO. Market analysis of infectious diseases. J Infect Dis Med Microbiol . 2019;3(2). Available from: https://www.alliedacademies.org/articles/market-analysis-of-infectious-diseases-11699.html 5. Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med . 2017;45(4):623–629. doi:10.1097/CCM.0000000000002262 6. Turgman O, Schinkel M, Wiersinga WJ. Host response biomarkers for sepsis in the emergency room. Crit Care . 2023;27(1):97. doi:10.1186/s13054-023-04432-0 7. Marshall JC, Reinhart K; International Sepsis Forum. Biomarkers of sepsis. Crit Care Med . 2009;37(7):2290–2298. doi:10.1097/CCM.0b013e3181a02afc 8. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci . 2013;50(1):23–36. doi:10.3109/10408363.2013.764490 9. Sinha M, Jupe J, Mack H, Coleman TP, Shelley ML, Fraley SI. Emerging technologies for molecular diagnosis of sepsis. Clin Microbiol Rev . 2018;31(2) :e00089 –17. doi:10.1128/CMR.00089-17 10. Anegundi R, Kulkarni R, Patil S, Chitharagi V, Ajantha G. Evaluation of a modified protocol that decreases the turnaround time of positive blood cultures. Iran J Microbiol . 2018;10(4):281–286. 11. Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: new aspects and recent developments. Eur J Microbiol Immunol (Bp) . 2014;4(1):1–25. doi:10.1556/EuJMI.4.2014.1.1 12. Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn . 2008;8(5):617–633. doi:10.1586/14737159.8.5.617 13. Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res Int . 2015;2015:354671. doi:10.1155/2015/354671 14. Tounta V, Liu Y, Cheyne A, Larrouy-Maumus G. Metabolomics in infectious diseases and drug discovery. Mol Omics . 2021;17(3):376–393. doi:10.1039/d1mo00043a 15. Gunsolus IL, Sweeney TE, Liesenfeld O, Ledeboer NA, Kraft CS. Diagnosing and managing sepsis by probing the host response to infection: advances, opportunities, and challenges. J Clin Microbiol . 2019;57(7) :e00425-19 . doi:10.1128/JCM.00425-19 16. Ko ER, Yang WE, McClain MT, Woods CW, Ginsburg GS, Tsalik EL. What was old is new again: using the host response to diagnose infectious disease. Expert Rev Mol Diagn . 2015;15(9):1143–1158. doi:10.1586/14737159.2015.1074861 17. Liebal UW, Phan ANT, Sudhakar M, Raman K, Blank LM. Machine learning applications for mass spectrometry-based metabolomics. Metabolites . 2020;10(6):243. doi:10.3390/metabo10060243 18. Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep . 2014;31(6):756–767. doi:10.1039/c3np70100e 19. 19. Haag AM. Mass analyzers and mass spectrometers. Adv Exp Med Biol . 2016;919:157–169. doi:10.1007/978-3-319-41448-5_7 20. Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers . 2022;2(1):96. doi:10.1038/s43586-022-00145-7 21. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies: challenges and emerging directions. J Am Soc Mass Spectrom . 2016;27(12):1897–1905. doi:10.1007/s13361-016-1469-y 22. Zhvansky ES, Sorokin AA, Pekov SI, Indeykina MI, Ivanov DG, Shurkhay VA, et al. Unified representation of high- and low-resolution spectra to facilitate application of mass spectrometric techniques in clinical practice. Clin Mass Spectrom . 2019;12:37–46. doi:10.1016/j.clinms.2019.02.002 23. Fung AWS, Sugumar V, Ren AH, Kulasingam V. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol . 2020;73(2):61–69. doi:10.1136/jclinpath-2019-206269 24. Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev . 2017;46(16):4818–4832. doi:10.1039/c6cs00693k 25. Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol . 2010;8(1):74–82. doi:10.1038/nrmicro2242 26. Smith RD. Mass spectrometry in biomarker applications: from untargeted discovery to targeted verification, and implications for platform convergence and clinical application. Clin Chem . 2012;58(3):528–530. doi:10.1373/clinchem.2011.174748 27. Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt Chem . 2012;32:1–14. doi:10.1016/j.trac.2011.08.009 28. Zhou X, Zhang W, Ouyang Z. Recent advances in on-site mass spectrometry analysis for clinical applications. Trends Analyt Chem . 2022;149:116548. doi:10.1016/j.trac.2022.116548 29. Hong Y, Li LH, Kuo TH, Lee YT, Hsu CC. Early prediction of septic shock in emergency department using serum metabolites. J Am Soc Mass Spectrom . 2025;36(6):1264-1276. doi:10.1021/jasms.5c00009. 30. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA . 2016;315(8):801–810. doi:10.1001/jama.2016.0287 31. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet . 2020;395(10219):200–211. doi:10.1016/S0140-6736(19)32989-7 32. Bauer M, Gerlach H, Vogelmann T, Preissing F, Stiefel J, Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019: results from a systematic review and meta-analysis. Crit Care . 2020;24(1):239. doi:10.1186/s13054-020-02950-x 33. Nguyen HB, Corbett SW, Steele R, Banta J, Clark RT, Hayes SR, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med . 2007;35(4):1105–1112. doi:10.1097/01.CCM.0000259463.33848.3D 34. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med . 2001;345(19):1368–1377. doi:10.1056/NEJMoa010307 35. Capp R, Horton CL, Takhar SS, Ginde AA, Peak DA, Zane R, et al. Predictors of patients who present to the emergency department with sepsis and progress to septic shock between 4 and 48 hours of emergency department arrival. Crit Care Med . 2015;43(5):983–988. doi:10.1097/CCM.0000000000000892 36. Glickman SW, Cairns CB, Otero RM, Woods CW, Tsalik EL, Langley RJ, et al. Disease progression in hemodynamically stable patients presenting to the emergency department with sepsis. Acad Emerg Med . 2010;17(4):383–390. doi:10.1111/j.1553-2712.2010.00694.x 37. Worapratya P, Wuthisuthimethawee P. Septic shock in the ER: diagnostic and management challenges. Open Access Emerg Med . 2019;11:77–86. doi:10.2147/OAEM.S198573 38. Gornet M, Leroux P, Ramont L, De Ruffi S, Giordano Orsini G, Losset X, et al. Lack of admission biomarkers' clinical utility in outcomes prediction in patients suspected with infection in the emergency department. Am J Emerg Med . 2021;47:109–114. doi:10.1016/j.ajem.2021.04.033 39. Kim SJ, Hwang SO, Kim YW, Lee JH, Cha KC. Procalcitonin as a diagnostic marker for sepsis/septic shock in the emergency department: a study based on Sepsis-3 definition. Am J Emerg Med . 2019;37(2):272–276. doi:10.1016/j.ajem.2018.04.042 40. Cho SY, Choi JH. Biomarkers of sepsis. Infect Chemother . 2014;46(1):1–12. doi:10.3947/ic.2014.46.1.1 41. Hung SK, Lan HM, Han ST, Wu CC, Chen KF. Current evidence and limitation of biomarkers for detecting sepsis and systemic infection. Biomedicines . 2020;8(11):473. doi:10.3390/biomedicines8110473 42. Wardi G, Carlile M, Holder A, Shashikumar SP, Hayden SR, Nemati S. Predicting progression to septic shock in the emergency department using an externally generalizable machine-learning algorithm. Ann Emerg Med . 2021;77(4):395–406. doi:10.1016/j.annemergmed.2020.08.042 43. Zheng L, Lin F, Zhu C, Liu G, Wu X, Wu Z, et al. Machine learning algorithms identify pathogen-specific biomarkers of clinical and metabolomic characteristics in septic patients with bacterial infections. Biomed Res Int . 2020;2020:6950576. doi:10.1155/2020/6950576 44. Seymour CW, Yende S, Scott MJ, Pribis J, Mohney RP, Bell LN, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med . 2013;39(8):1423–1434. doi:10.1007/s00134-013-2965-2 45. Chung KP, Chen GY, Chuang TY, Huang YT, Chang HT, Chen YF, et al. Increased plasma acetylcarnitine in sepsis is associated with multiple organ dysfunction and mortality: a multicenter cohort study. Crit Care Med . 2019;47(2):210–218. doi:10.1097/CCM.0000000000003553 46. Want EJ, O'Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem . 2006;78(3):743–752. doi:10.1021/ac051312t 47. Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An efficient single phase method for the extraction of plasma lipids. Metabolites . 2015;5(2):389–403. doi:10.3390/metabo5020389 48. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics . 2007;3(3):211–221. doi:10.1007/s11306-007-0082-2 49. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med . 2017;5(10):816–826. doi:10.1016/S2213-2600(17)30294-1 50. Leite GGF, Scicluna BP, van der Poll T, Salomão R. Genetic signature related to heme–hemoglobin metabolism pathway in sepsis secondary to pneumonia. NPJ Syst Biol Appl . 2019;5(1):26. doi:10.1038/s41540-019-0100-5 51. Seidel A, Brunner S, Seidel P, Fritz GI, Herbarth O. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer . 2006;94(12):1726–1733. doi:10.1038/sj.bjc.6603171 52. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol . 2016;12(5):311–316. doi:10.1038/nchembio.2053 53. Wang W, Wang H, Sun T. N6-methyladenosine modification: regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother . 2023;168:115719. doi:10.1016/j.biopha.2023.115719 54. Chen F, Xue J, Zhou L, Wu S, Chen Z. Identification of serum biomarkers of hepatocarcinoma through liquid chromatography/mass spectrometry-based metabonomic method. Anal Bioanal Chem . 2011;401(6):1899–1907. doi:10.1007/s00216-011-5232-1 55. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol . 2015;427(21):3389–3406. doi:10.1016/j.jmb.2015.06.020 56. Rhee HJ, Kim EJ, Lee JK. Physiological polyamines: simple primordial stress molecules. J Cell Mol Med . 2007;11(4):685–703. doi:10.1111/j.1582-4934.2007.00059.x 57. Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Hua D, et al. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Anim Nutr . 2021;7(4):1189–1204. doi:10.1016/j.aninu.2021.08.008 58. Stępińska O, Dymkowska D, Mateuszuk Ł, Zabłocki K. Lipopolysaccharide affects energy metabolism and elevates nicotinamide N-methyltransferase level in human aortic endothelial cells (HAEC). Int J Biochem Cell Biol . 2022;151:106292. doi:10.1016/j.biocel.2022.106292 59. Suchard MS, Savulescu DM. Nicotinamide pathways as the root cause of sepsis – an evolutionary perspective on macrophage energetic shifts. FEBS J . 2022;289(4):955–964. doi:10.1111/febs.16197 60. Novak Kujundžić R. COVID-19: are we facing secondary pellagra which cannot simply be cured by vitamin B3? Int J Mol Sci [Internet]. 2022;23(8):4327. doi:10.3390/ijms23084327 61. Dauphin A, Gérard J, Lapeyrie F, Legué V. Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus . Protoplasma . 2007;231(1–2):83–88. doi:10.1007/s00709-007-0265-4 62. Keller BO, Wu BTF, Li SSJ, Monga V, Innis SM. Hypaphorine is present in human milk in association with consumption of legumes. J Agric Food Chem . 2013;61(31):7654–7660. doi:10.1021/jf401573b 63. Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nohroudi M, Adams MA, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev . 2022;74(3):506–551. doi:10.1124/pharmrev.121.000438 64. Flanagan JL, Simmons PA, Vehige J, Willcox MDP, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) . 2010;7(1):30. doi:10.1186/1743-7075-7-30 65. Wang Y, Liu Y, Cao Q, Shi X, Lu H, Gao S, et al. Metabolomic analysis for the protective effects of mangiferin on sepsis-induced lung injury in mice. Biomed Chromatogr . 2018;32(6) :e4208 . doi:10.1002/bmc.4208 66. Lodge S, Litton E, Gray N, Ryan M, Millet O, Fear M, et al. Stratification of sepsis patients on admission into the intensive care unit according to differential plasma metabolic phenotypes. J Proteome Res . 2024;23(4):1328–1340. doi:10.1021/acs.jproteome.3c00667 67. Kim J, Chang H, Kim D, Jang DH, Park I, Kim K. Machine learning for prediction of septic shock at initial triage in emergency department. J Crit Care . 2020;55:163–170. doi:10.1016/j.jcrc.2019.10.017 68. Ojha T, Duncan M, Kumar V, Sharma A, Erickson D. Point-of-care technologies for sepsis diagnosis and treatment. Lab Chip . 2019;19(15):2325–2334. doi:10.1039/c9lc00329b 69. Kauppi AM, Edin A, Ziegler I, Mölling P, Sjöstedt A, Gylfe Å, et al. Metabolites in blood for prediction of bacteremic sepsis in the emergency room. PLoS One . 2016;11(12) :e0167356 . doi:10.1371/journal.pone.0167356 70. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med . 2013;5(195):195ra95. doi:10.1126/scitranslmed.3005893 71. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res . 2018;46(D1) :D608 –D617. doi:10.1093/nar/gkx1089 72. Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat Methods . 2020;17(10):953–954. doi:10.1038/s41592-020-0942-5 73. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res . 2019;47(D1) :D1102 –D1109. doi:10.1093/nar/gky1033 74. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods . 2019;16(4):299–302. doi:10.1038/s41592-019-0344-8 75. Dührkop K, Nothias LF, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol . 2021;39(4):462–471. doi:10.1038/s41587-020-0740-8 76. Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform . 2016;8(1):61. doi:10.1186/s13321-016-0174-y 77. Narayana Iyengar S, Dietvorst J, Ferrer-Vilanova A, Guirado G, Muñoz-Berbel X, Russom A. Toward rapid detection of viable bacteria in whole blood for early sepsis diagnostics and susceptibility testing. ACS Sens . 2021;6(9):3357–3366. doi:10.1021/acssensors.1c00962 78. Giuliano C, Patel CR, Kale-Pradhan PB. A guide to bacterial culture identification and results interpretation. PT . 2019;44(4):192–200. 79. Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev . 2004;17(4):840–862. doi:10.1128/CMR.17.4.840-862.2004 80. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect . 2018;24(4):335–341. doi:10.1016/j.cmi.2017.10.013 81. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol . 2019;11:1756287219832172. doi:10.1177/1756287219832172 82. Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet . 2022;400(10369):2221–2248. doi:10.1016/S0140-6736(22)02185-7 83. Hodges NA, Melling J, Parker SJ. A comparison of chemically defined and complex media for the production of Bacillus subtilis spores having reproducible resistance and germination characteristics. J Pharm Pharmacol . 1980;32(1):126–130. doi:10.1111/j.2042-7158.1980.tb12888.x 84. Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol . 2018;3(4):514–522. doi:10.1038/s41564-018-0123-9 85. Zhang G, Mills DA, Block DE. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol . 2009;75(4):1080–1087. doi:10.1128/AEM.02276-08 86. Machado H, Weng LL, Dillon N, Seif Y, Holland M, Pekar JE, et al. Strain-specific metabolic requirements revealed by a defined minimal medium for systems analyses of Staphylococcus aureus . Appl Environ Microbiol . 2019;85(21) :e01773-19 . doi:10.1128/AEM.01773-19 87. Khan H, Flint SH, Yu PL. Development of a chemically defined medium for the production of enterolysin A from Enterococcus faecalis B9510. J Appl Microbiol . 2013;114(4):1092–1102. doi:10.1111/jam.12118 88. Wang D, Greenwood P, Klein MS. A protein-free chemically defined medium for the cultivation of various micro-organisms with food safety significance. J Appl Microbiol . 2021;131(2):844–854. doi:10.1111/jam.14989 89. Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients [Internet]. 2020;12(1):256. doi:10.3390/nu12010256 90. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol . 2010;42(1):39–51. doi:10.1016/j.biocel.2009.07.009 91. Tsimbalyuk S, Shornikov A, Srivastava P, Le VTB, Warren I, Khandokar YA, et al. Structural and kinetic characterization of the SpeG spermidine/spermine N-acetyltransferase from methicillin-resistant Staphylococcus aureus USA300. Cells . 2023;12(13):1746. doi:10.3390/cells12131746 92. Fang SB, Huang CJ, Huang CH, Wang KC, Chang NW, Pan HY, et al. speG is required for intracellular replication of Salmonella in various human cells and affects its polyamine metabolism and global transcriptomes. Front Microbiol . 2017;8:1817. doi:10.3389/fmicb.2017.01817 93. Campilongo R, Di Martino ML, Marcocci L, Pietrangeli P, Leuzzi A, Grossi M, et al. Molecular and functional profiling of the polyamine content in enteroinvasive E. coli : looking into the gap between commensal E. coli and harmful Shigella . PLoS One . 2014;9(9) :e106589 . doi:10.1371/journal.pone.0106589 94. Hu LI, Filippova EV, Dang J, Pshenychnyi S, Ruan J, Kiryukhina O, et al. The spermidine acetyltransferase SpeG regulates transcription of the small RNA rprA . PLoS One . 2018;13(12) :e0207563 . doi:10.1371/journal.pone.0207563 95. Meng SY, Bennett GN. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol . 1992;174(8):2659–2669. doi:10.1128/jb.174.8.2659-2669.1992 96. VanDrisse CM, Escalante-Semerena JC. Protein acetylation in bacteria. Annu Rev Microbiol . 2019;73:111–132. doi:10.1146/annurev-micro-020518-115351 97. Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA. Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol . 2014;10(5):371–377. doi:10.1038/nchembio.1501 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98236 | - |
| dc.description.abstract | 感染相關疾病仍是全球健康的重大威脅,涵蓋從常見細菌感染到如敗血性休克等危及生命的併發症,不僅導致高罹病與死亡率,亦造成沉重的醫療與經濟負擔。這類疾病常需即時處置,尤其是在急重症情境中,若無法于黃金時機啓動適當治療,可能導致臨床惡化甚至死亡。然而,現行診斷流程多仰賴耗時的培養程序或複雜的分子檢測技術,導致診斷遲滯與治療延誤,影響臨床决策與病患預後。隨著抗藥性病原體不斷出現,臨床迫切需要能够快速、準確、易于應用的診斷工具,以因應感染相關臨床挑戰。
本論文致力于開發快速、有效且具臨床轉譯潜力的感染性疾病診斷策略,核心目標在于縮短診斷時程,提升急重症病患照護效率。本研究以質譜(mass spectrometry, MS)技術爲平臺,建構兩種可應用于臨床樣本的診斷工具,分別針對感染後果與感染源進行偵測。質譜在此不僅爲分析工具,更被設計爲解决特定臨床瓶頸的診斷手段。 爲同時回應宿主與病原層面的診斷延遲問題,我們開發了兩種以質譜爲基礎的工作流程,分別對應感染性疾病管理中的不同面向。第一項研究針對急診中敗血性休克的早期預測問題,采用高解析液相層析質譜技術分析入院時的血清代謝體,建立能够預測休克風險的代謝特徵。結合機器學習後所建構的模型可顯著早于傳統臨床評分系統辨識高風險病患,爭取治療先機。值得一提的是,以低解析度質譜建構的模型表現亦具可比性,顯示未來臨床應用的可行性。 第二項研究聚焦于加速細菌鑒定流程。我們建立了一套結合流動注射與質譜的快速策略,可直接分析早期液體培養樣本中的代謝指紋,無需菌落分離即可完成鑒定。本方法于培養後6至9小時內即可達成菌種層級的辨識,幷在標準菌株與臨床分離株(含抗藥株)間展現高度準確性。相較于目前臨床標準的MALDI-TOF MS,本方法顯著縮短診斷時間,亦可整合至現有自動化培養系統,具高度實用潜力。 綜合而言,這兩項研究展示了以質譜爲基礎的代謝組學可作爲解决感染性疾病診斷瓶頸的統一架構。無論是預測宿主惡化風險,或是鑒定致病菌來源,本研究所提出的快速代謝指紋技術皆展現其支持即時、準確臨床决策的潜力。除診斷性能外,對于具區辨力代謝物的生物學詮釋亦揭示了宿主與病原間的互動機制,包含細菌壓力反應與跨菌種的代謝適應行爲。這些發現凸顯了代謝物爲基礎的診斷工具在推動臨床應用與深化感染疾病生物學理解上的廣泛轉譯潜力。 | zh_TW |
| dc.description.abstract | Infection-related diseases remain a major threat to global health, encompassing conditions ranging from common bacterial infections to life-threatening complications. These diseases contribute to high morbidity and mortality worldwide, placing significant burden on healthcare systems and society. Timely intervention is critical, especially in acute settings, where delays in diagnosis can lead to rapid deterioration. However, conventional diagnostic workflows rely heavily on time-consuming or complex techniques, which often fail to meet the clinical need for speed and accuracy. The growing prevalence of antimicrobial resistance further underscores the urgent demand for rapid, precise, and accessible diagnostic tools.
This dissertation focuses on the development of rapid, efficient, and clinically translatable diagnostic strategies for infectious diseases, with an emphasis on minimizing diagnostic delays and enhancing decision-making in acute care settings. The central aim is to leverage mass spectrometry (MS), a highly sensitive and versatile analytical technique, to build practical platforms that can detect infection consequences and identify causative pathogens directly from patient samples or culture media. Rather than focusing on MS as a general analytical method, this work frames it as a targeted clinical tool designed to solve specific diagnostic bottlenecks. To address the diagnostic delays at both host and pathogen levels, we developed two MS-based workflows tailored to different aspects of infectious disease management. The first project addresses the clinical challenge of early septic shock recognition in the emergency department. Using liquid chromatography-high-resolution mass spectrometry, we profiled serum metabolites collected at admission and identified metabolic signatures that precede the clinical onset of shock. Machine learning models trained on metabolic features successfully predicted septic shock risk several hours earlier than conventional clinical scores, offering a window for early intervention. Importantly, models built on low-resolution MS showed comparable performance, indicating feasibility for broader clinical translation. The second project focuses on accelerating bacterial identification. We developed a direct identification strategy using flow injection analysis–mass spectrometry, enabling rapid metabolite fingerprinting of bacteria from early-stage liquid culture without the need for colony isolation. This approach achieved species-level identification within 6 to 9 hours of incubation and demonstrated high accuracy across both type strains and clinical isolates, including drug-resistant strains. Compared to gold-standard MALDI-TOF MS, which requires prolonged culture and biomass accumulation, our method significantly reduces turnaround time and streamlines sample processing, while remaining compatible with automated incubation systems used in clinical microbiology laboratories. Together, these studies demonstrate how MS-based metabolomics can provide a unified framework for tackling diagnostic bottlenecks in infectious diseases. Whether predicting host deterioration or identifying causative pathogens, both approaches highlight the utility of rapid metabolic profiling in supporting timely, informed clinical decision-making. Beyond diagnostic performance, the biological interpretation of discriminative metabolites offered mechanistic insights into host-pathogen interactions, unveiling stress responses and metabolic adaptations across species. These findings illustrate the broader translational potential of metabolite-based diagnostics in advancing both patient care and our understanding of infectious disease biology. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:26:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:26:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv Table of Contents vi List of Figures ix List of Tables xii Chapter 1. Introduction 1 1-1 Challenges in Infectious Disease Diagnostics 1 1-1-1 The Role of Diagnostics in Clinical Decision-Making 1 1-1-2 Limitations of Current Diagnostic Workflows 2 1-2 Advantages of Metabolomics in Infectious Disease Diagnostics 3 1-3 Fundamental of Mass spectrometry 4 1-3-1 Ionization Techniques 5 1-3-2 Mass Analyzers and Performance 5 1-3-3 Coupling with Separation Techniques 5 1-4 Clinical Mass Spectrometry and Diagnostic Applications 6 1-5 Research Motivation and Chapter Roadmap 8 Chapter 2. Early Prediction of Septic Shock in Emergency Department Using Serum Metabolites 9 2-1 Introduction 9 2-1-1 Clinical Challenge in Early Septic Shock Detection 9 2-1-2 Limitations of Existing Biomarkers 9 2-1-3 Metabolomics for Early Physiological Insight 10 2-1-4 Aim of This Study 10 2-2 Results and discussion 11 2-2-1 Study design and participants recruitment 11 2-2-2 Untargeted Metabolomics Workflow Establishment 13 2-2-3 Development of a Metabolic Panel for Septic Shock Prediction 16 2-2-4 Targeted Detection Workflow Implementation 19 2-2-5 Identification of Metabolite Biomarkers 21 2-2-6 Biological Role of Identified Metabolite Biomarkers 29 2-2-7 Discussion 32 2-3 Conclusion 36 2-4 Method and materials 36 2-4-1 Patient Selection 36 2-4-2 Sample Preparation and Extraction 37 2-4-3 Untargeted Metabolomics and Metabolite Identification 38 2-4-4 Metabolites Annotation. 39 2-4-5 Targeted Metabolomics for Biomarker Semi-Quantification 40 2-4-6 Data processing 40 2-4-7 Feature Selection and Model Construction 41 2-4-8 Statistical Analysis 42 Chapter 3. Identifying Clinically Relevant Bacteria Directly from Clinical Culture Samples by Flow Injection Analysis using a Mass Spectrometry 43 3-1 Introduction 43 3-1-1 Limitations of Current Identification Methods 43 3-1-2 Challenges of Molecular Approaches 43 3-1-3 Metabolomics as a Functional Diagnostic Tool 44 3-1-4 Aim of This Study 44 3-2 Results and discussion 45 3-2-1 Experimental Design and Bacterial Panel 45 3-2-2 Bacterial Culture and Metabolite Collection 47 3-2-3 Feature Filtering and Culture Time Optimization 50 3-2-4 Model Construction for Species Classification 54 3-2-5 Biological Interpretation of Discriminative Metabolites 56 3-2-6 Comparison with MALDI-TOF MS 61 3-2-7 Evaluation Using Clinical Isolates 63 3-3 Conclusion 65 3-4 Method and Materials 66 3-4-1 Reagents and Chemicals 66 3-4-2 Culture Medium Preparation 67 3-4-3 Bacterial Cultivation 68 3-4-4 Sample preparation 69 3-4-5 Flow-injection Mass Spectrometry Analysis 69 3-4-6 MALDI-TOF MS Analysis 70 3-4-7 Data Processing and Feature Selection 70 3-4-8 Model Development and Statistical Analysis 71 3-4-9 Metabolite Annotation 71 Reference 73 Supporting figure 86 Supporting table 93 | - |
| dc.language.iso | en | - |
| dc.subject | 質譜分析 | zh_TW |
| dc.subject | 代謝組學 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 感染性疾病 | zh_TW |
| dc.subject | 快速診斷 | zh_TW |
| dc.subject | 敗血症休克 | zh_TW |
| dc.subject | 細菌鑒定 | zh_TW |
| dc.subject | metabolomics | en |
| dc.subject | bacterial identification | en |
| dc.subject | septic shock | en |
| dc.subject | rapid diagnostics | en |
| dc.subject | infectious diseases | en |
| dc.subject | machine learning | en |
| dc.subject | mass spectrometry | en |
| dc.title | 利用質譜開發感染性疾病的臨床診斷工具 | zh_TW |
| dc.title | Development of clinical diagnostic tools for infectious diseases using mass spectrometers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 朱忠瀚;何佳安;廖曉偉;李怡姿 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Han Chu;Ja-an Ho;Hsiao-Wei Liao;Yi-Tzu Lee | en |
| dc.subject.keyword | 質譜分析,代謝組學,機器學習,感染性疾病,快速診斷,敗血症休克,細菌鑒定, | zh_TW |
| dc.subject.keyword | mass spectrometry,metabolomics,machine learning,infectious diseases,rapid diagnostics,septic shock,bacterial identification, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202502339 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2030-07-23 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-23 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
