請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98222完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊志立 | zh_TW |
| dc.contributor.advisor | Jyh-Lyh Juang | en |
| dc.contributor.author | 邱謹宜 | zh_TW |
| dc.contributor.author | Jin-Yi Ciou | en |
| dc.date.accessioned | 2025-07-30T16:23:38Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Anoop, A., Singh, P. K., Jacob, R. S., & Maji, S. K. (2010). CSF Biomarkers for Alzheimer's Disease Diagnosis. Int J Alzheimers Dis, 2010.
Balestrini, A., Joseph, V., Dourado, M., Reese, R. M., Shields, S. D., Rougé, L., Bravo, D. D., Chernov-Rogan, T., Austin, C. D., Chen, H., Wang, L., Villemure, E., Shore, D. G. M., Verma, V. A., Hu, B., Chen, Y., Leong, L., Bjornson, C., Hötzel, K., . . . Riol-Blanco, L. (2021). A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med, 218(4). Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., Waters, C., Jimison, P., Shepherd, E., Sevush, S., Graff-Radford, N., Newland, D., Todd, M., Miller, B., Gold, M., Heilman, K., Doty, L., Goodman, I., Robinson, B., . . . Duara, R. (2002). Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord, 16(4), 203-212. Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nature Reviews Genetics, 6(1), 9-23. Braak, H., & Braak, E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging, 18(4), 351-357. Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401-415. Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules, 25(24). Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195-208. Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., Kwiatkowski, D. P., McCarthy, M. I., Ouwehand, W. H., Samani, N. J., Todd, J. A., Donnelly, P., Barrett, J. C., Burton, P. R., Davison, D., Donnelly, P., Easton, D., Evans, D., Leung, H.-T., . . . Primary, I. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661-678. Camins, A., Verdaguer, E., Folch, J., Canudas, A. M., & Pallàs, M. (2006). The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect, 19(8), 453-460. Cao, S., Fisher, D. W., Yu, T., & Dong, H. (2019). The link between chronic pain and Alzheimer's disease. J Neuroinflammation, 16(1), 204. Chen, G., Ward, B. D., Xie, C., Li, W., Wu, Z., Jones, J. L., Franczak, M., Antuono, P., & Li, S. J. (2011). Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology, 259(1), 213-221. Cole, L. J., Farrell, M. J., Duff, E. P., Barber, J. B., Egan, G. F., & Gibson, S. J. (2006). Pain sensitivity and fMRI pain-related brain activity in Alzheimer's disease. Brain, 129(11), 2957-2965. Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet, 19(R1), R12-20. Doruk, H., Naharci, M. I., Bozoglu, E., Isik, A. T., & Kilic, S. (2010). The relationship between body mass index and incidental mild cognitive impairment, Alzheimer's disease and vascular dementia in elderly. J Nutr Health Aging, 14(10), 834-838. Frésard, L., Smail, C., Ferraro, N. M., Teran, N. A., Li, X., Smith, K. S., Bonner, D., Kernohan, K. D., Marwaha, S., Zappala, Z., Balliu, B., Davis, J. R., Liu, B., Prybol, C. J., Kohler, J. N., Zastrow, D. B., Reuter, C. M., Fisk, D. G., Grove, M. E., . . . Montgomery, S. B. (2019). Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med, 25(6), 911-919. Ghilardi, M. F., Alberoni, M., Marelli, S., Marina, R., Franceschi, M., Ghez, C., & Fazio, F. (1999). Impaired movement control in Alzheimer's disease. Neuroscience Letters, 260(1), 45-48. Giménez-Llort, L., Bernal, M. L., Docking, R., Muntsant-Soria, A., Torres-Lista, V., Bulbena, A., & Schofield, P. A. (2020). Pain in Older Adults With Dementia: A Survey in Spain. Front Neurol, 11, 592366. González-Ramírez R, C. Y., Liedtke WB, et al. (2017). TRP Channels and Pain. (E. TLR, Ed.). Boca Raton (FL): CRC Press/Taylor & Francis. Herrup, K. (2010). Reimagining Alzheimer's disease--an age-based hypothesis. J Neurosci, 30(50), 16755-16762. Ho, J. K., & Nation, D. A. (2018). Neuropsychological Profiles and Trajectories in Preclinical Alzheimer's Disease. J Int Neuropsychol Soc, 24(7), 693-702. Huber, C. M., Yee, C., May, T., Dhanala, A., & Mitchell, C. S. (2018). Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy. J Alzheimers Dis, 61(1), 265-281. Iijima, K., Liu, H.-P., Chiang, A.-S., Hearn, S. A., Konsolaki, M., & Zhong, Y. (2004). Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer's disease. Proceedings of the National Academy of Sciences, 101(17), 6623-6628. Irmady, K., Hale, C. R., Qadri, R., Fak, J., Simelane, S., Carroll, T., Przedborski, S., & Darnell, R. B. (2023). Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson's disease. Nat Commun, 14(1), 3956. Islam, M., Mazumder, M., Schwabe-Warf, D., Stephan, Y., Sutin, A. R., & Terracciano, A. (2019). Personality Changes With Dementia From the Informant Perspective: New Data and Meta-Analysis. J Am Med Dir Assoc, 20(2), 131-137. Jack, C. R., Jr., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 257-262. Kaneko, Y., & Szallasi, A. (2014). Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol, 171(10), 2474-2507. Khuong, T. M., Wang, Q. P., Manion, J., Oyston, L. J., Lau, M. T., Towler, H., Lin, Y. Q., & Neely, G. G. (2019). Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Sci Adv, 5(7), eaaw4099. Lee, K. I., Lee, H. T., Lin, H. C., Tsay, H. J., Tsai, F. C., Shyue, S. K., & Lee, T. S. (2016). Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation, 13(1), 92. Madabattula, S. T., Strautman, J. C., Bysice, A. M., O'Sullivan, J. A., Androschuk, A., Rosenfelt, C., Doucet, K., Rouleau, G., & Bolduc, F. (2015). Quantitative Analysis of Climbing Defects in a Drosophila Model of Neurodegenerative Disorders. J Vis Exp(100), e52741. Manning, F. C. (1994). Tacrine therapy for the dementia of Alzheimer's disease. Am Fam Physician, 50(4), 819-826. National, A. D. (2017). Numbers of people with dementia around the world Nitta, Y., & and Sugie, A. (2022). Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly, 16(1), 275-298. Ohashi, N., Tashima, K., Namiki, T., & Horie, S. (2023). Allyl isothiocyanate, an activator of TRPA1, increases gastric mucosal blood flow through calcitonin gene-related peptide and adrenomedullin in anesthetized rats. J Pharmacol Sci, 151(4), 187-194. Patapoutian, A., Tate, S., & Woolf, C. J. (2009). Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov, 8(1), 55-68. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 56(3), 303-308. Rather, M. A., Khan, A., Wang, L., Jahan, S., Rehman, M. U., Makeen, H. A., & Mohan, S. (2023). TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon, 9(6), e16910. Ravikumar, S., Denning, A. E., Lim, S., Chung, E., Sadeghpour, N., Ittyerah, R., Wisse, L. E. M., Das, S. R., Xie, L., Robinson, J. L., Schuck, T., Lee, E. B., Detre, J. A., Tisdall, M. D., Prabhakaran, K., Mizsei, G., de Onzono Martin, M. M. I., Arroyo Jiménez, M. d. M., Mũnoz, M., . . . Yushkevich, P. A. (2024). Postmortem imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in Alzheimer’s disease. Nature Communications, 15(1), 4803. Robinson, D. M., & Keating, G. M. (2006). Memantine: a review of its use in Alzheimer's disease. Drugs, 66(11), 1515-1534. Shastry, B. S. (2009). SNPs: Impact on Gene Function and Phenotype. In A. A. Komar (Ed.), Single Nucleotide Polymorphisms: Methods and Protocols (pp. 3-22). Humana Press. Souza Monteiro de Araujo, D., Nassini, R., Geppetti, P., & De Logu, F. (2020). TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets, 24(10), 997-1008. Tabatabaei-Jafari, H., Shaw, M. E., & Cherbuin, N. (2015). Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement (Amst), 1(4), 487-504. Tachibana, A., Iga, J.-i., Ozaki, T., Yoshino, Y., Yamazaki, K., Ochi, S., Kawabe, K., Horiuchi, F., Yoshida, T., Shimizu, H., Mori, T., Tatewaki, Y., Taki, Y., Ninomiya, T., & Ueno, S.-i. (2024). Behavioral and psychological symptoms and brain volumes in community-dwelling older persons from the Nakayama Study. Scientific Reports, 14(1), 26097. Vanderklish, P. W., & Bahr, B. A. (2000). The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol, 81(5), 323-339. Wang, Y. Y., Chang, R. B., Waters, H. N., McKemy, D. D., & Liman, E. R. (2008). The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem, 283(47), 32691-32703. Wightman, D. P., Jansen, I. E., Savage, J. E., Shadrin, A. A., Bahrami, S., Holland, D., Rongve, A., Børte, S., Winsvold, B. S., Drange, O. K., Martinsen, A. E., Skogholt, A. H., Willer, C., Bråthen, G., Bosnes, I., Nielsen, J. B., Fritsche, L. G., Thomas, L. F., Pedersen, L. M., . . . andMe Research, T. (2021). A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nature Genetics, 53(9), 1276-1282. Wolk, D. A., & Dickerson, B. C. (2016). Clinical features and diagnosis of Alzheimer disease. UpToDate, Waltham, MA. Zhang, H., Chang, L., Zhang, H., Nie, J., Zhang, Z., Yang, X., Vuong, A. M., Wang, Z., Chen, A., & Niu, Q. (2017). Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett, 277, 41-53. Zhao, W., Zhao, L., Chang, X., Lu, X., & Tu, Y. (2023). Elevated dementia risk, cognitive decline, and hippocampal atrophy in multisite chronic pain. Proceedings of the National Academy of Sciences, 120(9), e2215192120. Zhong, H., Zhou, X., Uhm, H., Jiang, Y., Cao, H., Chen, Y., Mak, T. T. W., Lo, R. M. N., Wong, B. W. Y., Cheng, E. Y. L., Mok, K. Y., Chan, A. L. T., Kwok, T. C. Y., Mok, V. C. T., Ip, F. C. F., Hardy, J., Fu, A. K. Y., & Ip, N. Y. (2024). Using blood transcriptome analysis for Alzheimer's disease diagnosis and patient stratification. Alzheimers Dement, 20(4), 2469-2484. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98222 | - |
| dc.description.abstract | 阿茲海默症(AD)患者的疼痛感知在疾病進程中會改變,然而基於患者的認知功能、表達能力等缺陷使疼痛難以準確量化,目前已知研究對AD 造成的疼痛感受性差異說法不一,背後的機制也不明確。為了釐清AD對疼痛感受性的影響,我們使用兩種不同的資料庫─阿茲海默症神經影像學倡議 (ADNI) 群體資料和台灣人體資料庫,找出重要的瞬時受體電位受器,其中,只有TRPA1在APP/PS1小鼠腦部有顯著的RNA變化。在血液轉錄組檢測中,將TRPA1與疼痛、認知功能、腦體積以及失智症合併精神行為症進行分析,發現TRPA1在中輕度認知障礙 (MCI)族群中不僅與痛的表現有關聯性,同時也與AD有關聯性。然而,僅靠臨床群體分析無法有效地找出TRPA1在疼痛與AD之間具有關聯性的關鍵證據,因此,我們使用果蠅模型進一步釐清真相。
我們使用加熱板產生有害溫度,使果蠅感到疼痛,並觀察他們以跳躍迴避有害熱的反應時間,發現AD果蠅對疼痛反應較遲鈍,且這種現象可能受果蠅大腦中的TRPA1調控。為了進一步探索TRPA1在這一過程中的具體參與,我們在AD果蠅腦部過表現TRPA1,我們發現TRPA1不僅能介導AD相關的疼痛敏感性,還能改善AD疾病進展。綜上所述,果蠅模型分析的結果驗證了臨床群體分析中TRPA1對疼痛和AD的因果關聯性,這意味著TRPA1在AD相關疼痛感受性和AD疾病進展中扮演著一個關鍵角色。 | zh_TW |
| dc.description.abstract | Pain perception in patients with Alzheimer’s disease (AD) changes throughout the progression of the disease. However, due to impairments in cognitive function and expressive ability,pain is difficult to accurately quantify. Current studies offer inconsistent conclusions regarding alterations in pain sensitivity caused by AD, and the underlying mechanisms remain unclear. To clarify the impact of AD on pain sensitivity, we used two distinct databases—the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort and the Taiwan Biobank—to identify key transient receptor potential (TRP) channels. Among them, only TRPA1 exhibit significant RNA changes in the brains of APP/PS1 mice. In transcriptomic analyses of blood samples, we further examined the associations of TRPA1 with pain, cognitive function, brain volume, and neuropsychiatric symptoms related to dementia. We found that TRPA1 is not only associated with pain manifestation in individuals with mildcognitive impairment (MCI), but also with the development of AD. However, clinical cohort analysis alone cannot effectively provide key evidence of a causal relationship between TRPA1, pain, and AD. Therefore, we used a Drosophila model to further investigate this connection.
We applied noxious heat via a hot plate to induce pain in the flies and observed their latency to jump as an avoidance response. We found that AD model flies exhibited delayed pain responses, and this phenomenon may be regulated by TRPA1 in the fly brain. To further explore TRPA1’s specific involvement in this process, we overexpressed TRPA1 in the brains of AD flies. We discovered that TRPA1 not only mediates AD-related pain susceptibility but also ameliorates AD progression. In summary, findings from the Drosophila model validate the causal relationship between TRPA1, pain, and AD observed in clinical cohort analyses. This suggests that TRPA1 plays a key role in both AD related pain susceptibility and the progression of AD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:23:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:23:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii Contents iv List of figure vi List of table vii 1. Introduction 1 1.1 Alzheimer’s disease (AD) 1 1.2 Transient receptor potential (TRP) ion channel 1 1.3 Biomarkers 2 1.4 Single-nucleotide polymorphisms (SNP) 3 1.5 Taiwan Biobank 3 1.6 Alzheimer's Disease Neuroimaging Initiative (ADNI) 3 1.7 Drosophila model 4 2. Result 6 2.1 TRPM3, TRPM8, and TRPA1 show consistent associations with pain and AD in SNP analyses from Taiwan Biobank and ADNI 6 2.2 Among TRPM3, TRPM8 and TRPA1, only TRPA1 show a significant change in brain (hippocampus) of mice and blood of MCI individual in pain 12 2.3 TRPA1 is associated with cognitive function in the MCI population 14 2.4 TRPA1 in blood are associated with atrophy of the middle temporal gyrus in the MCI individuals 17 2.5 TRPA1 is significantly associated with behavioral and psychological symptoms of dementia (BPSD) in the MCI population 19 2.6 Blood TRPA1 are associated with Tau and pTau181, but not Aβ42, in the MCI individuals 20 2.7 TRPA1 affects cognitive function via pTau181 mediation in the MCI population 21 2.8 TRPA1 affects the middle temporal gyrus via pTau181 in MCI individuals 23 2.9 Pain susceptibility is reduced in AD Drosophila 27 2.10 TRPA1 RNA levels are reduced in the brains of AD Drosophila 29 2.11 Modulating brain TRPA1 levels affects pain susceptibility in Drosophila 31 2.12 Overexpression of brain TRPA1 improves climbing ability in AD 33 2.13 Overexpression of brain TRPA1 increases the survival rate of AD 35 3. Discussion 36 3.1 Potential biomarker of TRPA1 in MCI stage of AD pathology 36 3.2 Potential mechanism of TRPA1 influencing AD via pTau 36 3.3 Therapeutic potential and possibility of neural function improvement 37 4. Future work 38 Materials and methods 39 Fly strains and genetic crosses 42 Hot plate assay 42 Lifespan 43 Locomotion assay 43 RNA isolation 43 Quantitative RT-PCR analysis 44 Statistical analysis 44 References 45 | - |
| dc.language.iso | en | - |
| dc.subject | 果蠅 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | Drosophila | en |
| dc.subject | Alzheimer's disease | en |
| dc.title | 探討疼痛和阿茲海默症的關聯性:臨床群體資料與果蠅模型分析 | zh_TW |
| dc.title | Investigation of the Link between Pain and Alzheimer's disease: Insights from Clinical Cohort Data and Drosophila Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江運金;江安世;吳益群 | zh_TW |
| dc.contributor.oralexamcommittee | Yun-Jin Jiang;Ann-Shyn Chiang;Yi-Chun Wu | en |
| dc.subject.keyword | 阿茲海默症,果蠅, | zh_TW |
| dc.subject.keyword | Alzheimer's disease,Drosophila, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202501903 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-19 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2030-07-16 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-16 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
