Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98215
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisorFrédéric Delmaszh_TW
dc.contributor.advisorFrédéric Delmasen
dc.contributor.author黃祺晏zh_TW
dc.contributor.authorQi-Yan Huangen
dc.date.accessioned2025-07-30T16:22:06Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-16-
dc.identifier.citationAbati, J., Zucareli, C., Brzezinski, C., Lopes, I., Krzyzanowski, F., Cardoso, M., & Henning, F. (2022). Water absorption and storage tolerance of soybean seeds with contrasting seed coat characteristics. Acta Scientiarum Agronomy, 44, e53096. https://doi.org/10.4025/actasciagron.v44i1.53096
Begcy, K., Sandhu, J., & Walia, H. (2018). Transient heat stress during early seed development primes germination and seedling establishment in rice. Frontiers in Plant Science, 9, 1768. https://doi.org/10.3389/fpls.2018.01768
Beresniewicz, M. M., Taylor, A. G., Goffinet, M. C., & Terhune, B. T. (1995). Characterization and location of a semipermeable layer in seed coats of leek and onion (Liliaceae), tomato and pepper (Solanaceae). Seed Science and Technology, 23(1), 123–134.
Chaban, I. A., Gulevich, A. A., Kononenko, N. V., Khaliluev, M. R., & Baranova, E. N. (2022). Morphological and structural details of tomato seed coat formation: a different functional role of the inner and outer epidermises in unitegmic ovule. Plants (Basel, Switzerland), 11(9), 1101. https://doi.org/10.3390/plants11091101
Chevalier, C., Nafati, M., Mathieu-Rivet, E., Bourdon, M., Frangne, N., Cheniclet, C., Renaudin, J.-P., Gévaudant, F., & Hernould, M. (2011). Elucidating the functional role of endoreduplication in tomato fruit development. Annals of Botany, 107(7), 1159-1169. https://doi.org/10.1093/aob/mcq257
Commuri, P. D., & Jones, R. J. (2001). High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Science, 41(4), 1122-1130. https://doi.org/10.2135/cropsci2001.4141122x
De Boeck, H. J., Dreesen, F. E., Janssens, I. A., & Nijs, I. (2010). Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16(7), 1992-2000. https://doi.org/10.1111/j.1365-2486.2009.02049.x
Feng, Y., Wang, T., & Liu, L. (2022). An efficient clearing protocol for the study of seed development in tomato (Solanum lycopersicum L.). Journal of Visualized Experiments, 187, e64445. https://doi.org/10.3791/64445
Gardner R. O. (1975). An overview of botanical clearing technique. Stain Technology, 50(2), 99–105. https://doi.org/10.3109/10520297509117042
Gavassi, M. A., Fernandes, G. C., Monteiro, C. C., Pereira Peres, L. E., & Carvalho, R. F. (2014). Seed germination in tomato: a focus on interaction between phytochromes and gibberellins or abscisic acid. American Journal of Plant Sciences, 05(14), 2163-2169. https://doi.org/10.4236/ajps.2014.514229
Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: a developmental perspective. The Plant Cell, 5(10), 1439-1451. https://doi.org/10.1105/tpc.5.10.1439
Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., & Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172(6), 1113-1123. https://doi.org/10.1016/j.plantsci.2007.03.004
Hernández, F., Poverene, M., & Presotto, A. (2018). Heat stress effects on reproductive traits in cultivated and wild sunflower (Helianthus annuus L.): evidence for local adaptation within the wild germplasm. Euphytica, 214(8), 146. https://doi.org/10.1007/s10681-018-2227-y
Hewezi, T., Léger, M., & Gentzbittel, L. (2008). A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower. Annals of Botany, 102(1), 127–140. https://doi.org/10.1093/aob/mcn071
Klarod, K., Dongsansuk, A., Piepho, H.-P., & Siri, B. (2021). Seed coating with plant nutrients enhances germination and seedling growth, and promotes total dehydrogenase activity during seed germination in tomato (Lycopersicon esculentum). Seed Science and Technology, 49(2), 107-124. https://doi.org/10.15258/sst.2021.49.2.03
Kumar, M., Tomar, M., Bhuyan, D. J., Punia, S., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Arrutia, F., Changan, S., Radha, Singh, S., Dhumal, S., Senapathy, M., Satankar, V., Anitha, T., Sharma, A., Pandiselvam, R., Amarowicz, R., & Mekhemar, M. (2021). Tomato (Solanum lycopersicum L.) seed: a review on bioactives and biomedical activities. Biomedicine and Pharmacotherapy, 142, 112018. https://doi.org/https://doi.org/10.1016/j.biopha.2021.112018
Li, Z., Palmer, W. M., Martin, A. P., Wang, R., Rainsford, F., Jin, Y., Patrick, J. W., Yang, Y., & Ruan, Y.-L. (2012). High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 63(3), 1155-1166. https://doi.org/10.1093/jxb/err329
Liu, Y. H., Offler, C. E., & Ruan, Y. L. (2016). Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiology, 172(1), 163-180. https://doi.org/10.1104/pp.16.00959
Lohar, D. P., & Peat, W. E. (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae, 73, 53-60. https://doi.org/10.1016/S0304-4238(97)00056-3
Lou, H., Li, S., Shi, Z., Zou, Y., Zhang, Y., Huang, X., Yang, D., Yang, Y., Li, Z., & Xu, C. (2025). Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell, 188(2), 530-549 e520. https://doi.org/10.1016/j.cell.2024.11.005
Mácová, K., Prabhullachandran, U., Štefková, M., Spyroglou, I., Pěnčík, A., Endlová, L., Novák, O., & Robert, H. S. (2022). Long-term high-temperature stress impacts on embryo and seed development in Brassica napus. Frontiers in Plant Science, 13, 844292. https://doi.org/10.3389/fpls.2022.844292
McLaughlin, J. E., & Boyer, J. S. (2004). Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Annals of Botany, 94(5), 675-689. https://doi.org/10.1093/aob/mch193
Miller, G., Beery, A., Singh, P. K., Wang, F., Zelingher, R., Motenko, E., & Lieberman-Lazarovich, M. (2021). Contrasting processing tomato cultivars unlink yield and pollen viability under heat stress. AoB Plants, 13(4), plab046. https://doi.org/10.1093/aobpla/plab046
Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37(3), 118-125. https://doi.org/10.1016/j.tibs.2011.11.007
Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., de Groot, P. F. M., Jansma, S. Y., Mariani, C., Park, S., & Rieu, I. (2016). High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One, 11(12), e0167614. https://doi.org/10.1371/journal.pone.0167614
Ordóñez, R. A., Savin, R., Cossani, C. M., & Slafer, G. A. (2015). Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 183, 184-203. https://doi.org/https://doi.org/10.1016/j.fcr.2015.07.010
Ortiz-Bobea, A., Wang, H., Carrillo, C. M., & Ault, T. R. (2019). Unpacking the climatic drivers of US agricultural yields. Environmental Research Letters, 14(6), 064003. https://doi.org/10.1088/1748-9326/ab1e75
Osorio, E., Davis, A. R., Warkentin, T. D., & Bueckert, R. A. (2023). Ovule abortion and seed set of field pea (Pisum sativum L.) grown under high temperature. Canadian Journal of Plant Science, 103(3), 270-284. https://doi.org/10.1139/cjps-2022-0156
Parrotta, L., Aloisi, I., Faleri, C., Romi, M., Del Duca, S., & Cai, G. (2020). Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom. Plant Physiology and Biochemistry, 154, 463-475. https://doi.org/10.1016/j.plaphy.2020.06.047
Pipattanawong, R., Yamane, K., Fujishige, N., Bang, S.-w., & Yamaki, Y. (2009). Effects of high temperature on pollen quality, ovule fertilization and development of embryo and achene in ‘Tochiotome’ strawberry. Journal of the Japanese Society for Horticultural Science, 78(3), 300-306. https://doi.org/10.2503/jjshs1.78.300
Pradhan, G. P., & Prasad, P. V. (2015). Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One, 10(2), e0116620. https://doi.org/10.1371/journal.pone.0116620
Raja, M. M., Vijayalakshmi, G., Naik, M. L., Basha, P. O., Sergeant, K., Hausman, J. F., & Khan, P. S. S. V. (2019). Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 41, 47. https://doi.org/10.1007/s11738-019-2835-8
Roth, M., Florez-Rueda, A. M., Griesser, S., Paris, M., & Stadler, T. (2018). Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. Annals of Botany, 121(1), 107-118. https://doi.org/10.1093/aob/mcx133
Satake, T., & Yoshida, S. (1978). High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science, 47(1), 6-17. https://doi.org/10.1626/jcs.47.6
Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738. https://doi.org/10.1093/aob/mcl037
Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell & Environment, 23(7), 719-726. https://doi.org/10.1046/j.1365-3040.2000.00589.x
Siebers, M. H., Yendrek, C. R., Drag, D., Locke, A. M., Rios Acosta, L., Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., & Ort, D. R. (2015). Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Global Change Biology, 21(8), 3114-3125. https://doi.org/10.1111/gcb.12935
Song, J., Xie, X., Cui, Y., & Zou, J. (2021). Endosperm–embryo communications: recent advances and perspectives. Plants, 10(11), 2511. https://doi.org/10.3390/plants10112511
Sturm, A., Hess, D., Lee, H.-S., & Lienhard, S. (1999). Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiologia Plantarum, 107, 159–165. https://doi.org/10.1034/j.1399-3054.1999.100202.x
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. https://doi.org/10.1016/j.tplants.2004.03.006
Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9, 49. https://doi.org/10.1186/1471-2229-9-49
Zhang, X., Högy, P., Wu, X., Schmid, I., Wang, X., Schulze, W. X., Jiang, D., & Fangmeier, A. (2018). Physiological and proteomic evidence for the interactive effects of post-anthesis heat stress and elevated CO2 on wheat. Proteomics, 18(23), e1800262. https://doi.org/10.1002/pmic.201800262
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98215-
dc.description.abstract熱逆境是番茄生殖生長的主要不利因素。隨著全球暖化加劇,番茄在生殖生長期間處於長期熱逆境(chronic heat stress)的情況愈發普遍。然而,長期熱逆境對番茄果實與種子發育的影響仍未被充分探討。先前研究指出,在授粉後第5天接受高溫處理的果實(HS05組),成熟後果皮變薄且種子顯著得縮小,而在授粉後第15天(HS15組)處於長期熱逆境的果實,成熟果實和種子未被觀察到有形態上的改變。本研究分析長期熱逆境在West Virginia 106番茄果實發育早期(授粉後第5天)與晚期(授粉後第15天)對胚發育的影響。HS05組種子幾乎不發芽,然而種子發芽率在HS15組僅有輕微下降。比較長期熱逆境與正常環境溫度下的授粉後12天種子,觀察到HS05種子的胚發育階段遲滯且子葉形狀異常。由於種子透明化處理不確實,HS15組的胚胎發育情形尚不明確。本研究結果顯示,長期熱逆境在果實早期發育階段會干擾胚胎發生過程,這可能是導致種子發芽率降低的主要原因。未來仍需進一步釐清長期熱逆境對處於發育後期階段胚胎的影響。zh_TW
dc.description.abstractHeat stress is a major constraint on tomato reproduction. Chronic heat stress is becoming increasingly prevalent due to global warming. The impact of heat stress on early fruit and seed development remains underexplored. In this study, we investigated the effects of chronic heat stress during early (5 DPA) and later (15 DPA) stages of fruit development in tomato. In a previous study, tomato fruits at 5 DPA exposed to chronic heat stress developed thinner pericarps and smaller seeds, while no visible morphological changes were observed in HS15 fruits. In the present study, seed germination was significantly reduced in HS05 and only slightly affected in HS15. Detailed embryogenesis in the tomato cultivar West Virginia 106 was observed under control conditions. We revealed developmental lag and abnormal cotyledon emergence in HS05 seeds at 12 DPA. Embryogenesis under HS15 remained unclear due to inadequate seed clearing. These findings indicate that chronic heat stress during early fruit development disrupts embryogenesis, likely contributing to reduced seed viability. Further research is needed to determine the effects of heat stress on later stages of embryogenesis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:22:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:22:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgement ii
摘要 iv
Abstract v
Table of content vi
List of figures vii
List of tables vii
Introduction 1
Materials and methods 5
Plant Material and Growth Environment 5
Germination Test 6
Seed Clearing 7
Results 8
Chronic Heat Stress Compromises Germination 8
Embryogenesis in the CT seeds 12
Chronic Heat Stress Appears to Delay or Arrest Embryogenesis 14
Embryo Visibility and Seed Coat Development 21
Discussion 23
Possible Delay of embryogenesis May Hinder Germination 23
Altered Seed Coat Composition Could Reduce Embryo Visibility 25
Endosperm Failure is a Potential Cause of Embryo Abortion 27
Limited Sugar supply Leads to Reproductive Organ Abortion 28
References 30
-
dc.language.isoen-
dc.subject胚發育zh_TW
dc.subject番茄zh_TW
dc.subject發芽zh_TW
dc.subject種子透明化zh_TW
dc.subject熱逆境zh_TW
dc.subjectTomatoen
dc.subjectEmbryogenesisen
dc.subjectGerminationen
dc.subjectSeed Clearingen
dc.subjectHeat Stressen
dc.title長期熱逆境對番茄胚發育影響之研究zh_TW
dc.titleInvestigation of tomato embryogenesis under chronic heat stressen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳凱儀zh_TW
dc.contributor.coadvisorKai-Yi Chenen
dc.contributor.oralexamcommitteeMichel Hernould;沈湯龍;蔡育彰zh_TW
dc.contributor.oralexamcommitteeMichel Hernould;Tang-Long Shen;Yu-Chang Tsaien
dc.subject.keyword番茄,胚發育,熱逆境,種子透明化,發芽,zh_TW
dc.subject.keywordTomato,Embryogenesis,Heat Stress,Seed Clearing,Germination,en
dc.relation.page35-
dc.identifier.doi10.6342/NTU202501685-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-17-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved