Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98209Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 蘇筱丰 | zh_TW |
| dc.contributor.author | Hsiao-Feng Su | en |
| dc.date.accessioned | 2025-07-30T16:20:49Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-27 | - |
| dc.identifier.citation | Arif, A., Zhang, C., Sajib, M. H., Uddin, M. N., Habibullah, M., Feng, R., Feng, M., Rahman, M. S., & Zhang, Y. (2025). Rock Slope Stability Prediction: A Review of Machine Learning Techniques. Geotechnical and Geological Engineering, 43(3), 124. https://doi.org/10.1007/s10706-025-03091-5
Ashfaque, J., & Iqbal, A. (2019). Introduction to Support Vector Machines and Kernel Methods. Balamurugan, N. M., Kannadasan, R., Alsharif, M. H., & Uthansakul, P. (2022). A Novel Forward-Propagation Workflow Assessment Method for Malicious Packet Detection. Sensors, 22(11), 4167. https://www.mdpi.com/1424-8220/22/11/4167 Belete, D., & D H, M. (2021). Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications, 44, 1-12. https://doi.org/10.1080/1206212X.2021.1974663 Belov, D., & Armstrong, R. (2011). Distributions of the Kullback-Leibler divergence with applications. The British journal of mathematical and statistical psychology, 64, 291-309. https://doi.org/10.1348/000711010X522227 Chen, R., Zhang, P., Wu, H., Wang, Z., & Zhong, Z. (2019). Prediction of shield tunneling-induced ground settlement using machine learning techniques. Frontiers of Structural and Civil Engineering, 13(6), 1363-1378. https://doi.org/10.1007/s11709-019-0561-3 Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.1145/2939672.2939785 Chicco, D., Warrens, M., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623 Chwała, M., Kok-Kwang, P., Marco, U., Jie, Z., Limin, Z., & and Ching, J. (2023). Time capsule for geotechnical risk and reliability. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 17(3), 439-466. https://doi.org/10.1080/17499518.2022.2136717 Demir, S., & Sahin, E. K. (2022). Comparison of tree-based machine learning algorithms for predicting liquefaction potential using canonical correlation forest, rotation forest, and random forest based on CPT data. Soil Dynamics and Earthquake Engineering, 154, 107130. https://doi.org/https://doi.org/10.1016/j.soildyn.2021.107130 Faska, Z., Lahbib, K., Haddouch, K., & el Akkad, N. (2023). A robust and consistent stack generalized ensemble-learning framework for image segmentation. Journal of Engineering and Applied Science. https://doi.org/10.1186/s44147-023-00226-4 Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1), 94. https://doi.org/10.1186/s40537-020-00369-8 Häse, F., Fdez. Galván, I., Aspuru-Guzik, A., Lindh, R., & Vacher, M. (2019). How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry [10.1039/C8SC04516J]. Chemical Science, 10(8), 2298-2307. https://doi.org/10.1039/C8SC04516J Hernández, M., Ramon-Julvez, U., Vilades, E., Cordón Ciordia, B., Mayordomo, E., & Garcia-Martin, E. (2023). Explainable artificial intelligence toward usable and trustworthy computer-aided early diagnosis of multiple sclerosis from Optical Coherence Tomography. https://doi.org/10.48550/arXiv.2302.06613 Hsiao, C.-H., Chen, A., Ge, L., & Yeh, F.-H. (2022). Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method. Acta Geotechnica. https://doi.org/10.1007/s11440-022-01520-w Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.04.085 Iqbal, S., Qureshi, A., Khursheed, K., Alhussein, M., Haider, S., & Rida, I. (2023). AMIAC: adaptive medical image analyzes and classification, a robust self-learning framework. Neural Computing and Applications, 1-29. https://doi.org/10.1007/s00521-023-09209-1 Ishihara, K., Troncoso, J., Kawase, Y., & Takahashi, Y. (1980). Cyclic Strength Characteristics of Tailings Materials. Soils and Foundations, 20(4), 127-142. https://doi.org/https://doi.org/10.3208/sandf1972.20.4_127 Jafari-Marandi, R. (2021). Supervised or unsupervised learning? Investigating the role of pattern recognition assumptions in the success of binary predictive prescriptions. Neurocomputing, 434, 165-193. https://doi.org/https://doi.org/10.1016/j.neucom.2020.12.063 Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2 Jas, K., & Dodagoudar, G. R. (2023a). Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynamics and Earthquake Engineering, 165, 107662. https://doi.org/https://doi.org/10.1016/j.soildyn.2022.107662 Jas, K., & Dodagoudar, G. R. (2023b). Liquefaction Potential Assessment of Soils Using Machine Learning Techniques: A State-of-the-Art Review from 1994–2021. International Journal of Geomechanics, 23(7), 03123002. https://doi.org/doi:10.1061/IJGNAI.GMENG-7788 Khan, M. Y., Qayoom, A., Nizami, M., Siddiqui, M. S., Wasi, S., & Syed, K.-U.-R. R. (2021). Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques. Complexity. https://doi.org/10.1155/2021/2553199 Kimura, N., Yoshinaga, I., Sekijima, K., Azechi, I., & Baba, D. (2019). Convolutional Neural Network Coupled with a Transfer-Learning Approach for Time-Series Flood Predictions. Water, 12, 96. https://doi.org/10.3390/w12010096 Kose, T., Özgür, S., Cosgun, E., Keskinoğlu, A., & Keskinoğlu, P. (2020). Effect of Missing Data Imputation on Deep Learning Prediction Performance for Vesicoureteral Reflux and Recurrent Urinary Tract Infection Clinical Study. BioMed Research International, 2020, 1-15. https://doi.org/10.1155/2020/1895076 Liu, C., & Macedo, J. (2024). Machine learning-based models for estimating liquefaction-induced building settlements. Soil Dynamics and Earthquake Engineering, 182, 108673. https://doi.org/https://doi.org/10.1016/j.soildyn.2024.108673 Mahajan, A., Das, S., Su, W., & Bui, V.-H. (2024). Bayesian Neural Network-Based Approach for Probabilistic Prediction of Building Energy Demands. https://doi.org/10.20944/preprints202409.2211.v1 Manjrekar, O., & Duduković, M. (2019). Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique. Chemical Engineering Science: X, 2, 100023. https://doi.org/10.1016/j.cesx.2019.100023 Maxwell, A., Sharma, M., & Donaldson, K. (2021). Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling. Remote Sensing, 13, 4991. https://doi.org/10.3390/rs13244991 Mitelman, A., Yang, B., Urlainis, A., & Elmo, D. (2023). Coupling Geotechnical Numerical Analysis with Machine Learning for Observational Method Projects. Geosciences, 13(7), 196. https://www.mdpi.com/2076-3263/13/7/196 Monego, V. S., Anochi, J. A., & de Campos Velho, H. F. (2022). South America Seasonal Precipitation Prediction by Gradient-Boosting Machine-Learning Approach. Atmosphere, 13(2), 243. https://www.mdpi.com/2073-4433/13/2/243 Nguegnang, G. M., Rauhut, H., & Terstiege, U. (2024). Convergence of gradient descent for learning linear neural networks. Advances in Continuous and Discrete Models, 2024(1), 23. https://doi.org/10.1186/s13662-023-03797-x Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis — An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1), 1-76. https://doi.org/https://doi.org/10.1016/S0013-7952(96)00040-3 Öztornaci, B., Ata, B., & Kartal, S. (2024). Analysing Household Food Consumption in Turkey Using Machine Learning Techniques. Agris on-line Papers in Economics and Informatics, 16, 97-105. https://doi.org/10.7160/aol.2024.160207 Pan, K., Cai, Y. Q., Yang, Z. X., & Pan, X. D. (2019). Liquefaction of sand under monotonic and cyclic shear conditions: Impact of drained preloading history. Soil Dynamics and Earthquake Engineering, 126, 105775. https://doi.org/https://doi.org/10.1016/j.soildyn.2019.105775 Pan, K., Zhou, G. Y., Yang, Z. X., & Cai, Y. Q. (2020). Comparison of cyclic liquefaction behavior of clean and silty sands considering static shear effect. Soil Dynamics and Earthquake Engineering, 139, 106338. https://doi.org/https://doi.org/10.1016/j.soildyn.2020.106338 Papadopoulou, A., & Tika, T. (2008). The Effect of Fines on Critical State and Liquefaction Resistance Characteristics of Non-Plastic Silty Sands. Soils and Foundations, 48(5), 713-725. https://doi.org/https://doi.org/10.3208/sandf.48.713 Park, S.-S., & Kim, Y.-S. (2013). Liquefaction Resistance of Sands Containing Plastic Fines with Different Plasticity. Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 825-830. https://doi.org/doi:10.1061/(ASCE)GT.1943-5606.0000806 Prakash, S., & Sandoval, J. A. (1992). Liquefaction of low plasticity silts. Soil Dynamics and Earthquake Engineering, 11(7), 373-379. https://doi.org/https://doi.org/10.1016/0267-7261(92)90001-T Prokhorenkova, L. G., Gleb; Vorobev, Aleksandr; Dorogush, Anna Veronika; Gulin, Andrey. (2017). CatBoost: Unbiased Boosting with Categorical Features. arXiv(arXiv:1706.09516). https://arxiv.org/abs/1706.09516 Ragb, H., Ali, R., Jera, E., & Buaossa, N. (2021). Convolutional neural network based on transfer learning for breast cancer screening. https://doi.org/10.48550/arXiv.2112.11629 Rani, V., Nabi, S. T., Kumar, M., Mittal, A., & Kumar, K. (2023). Self-supervised Learning: A Succinct Review. Archives of Computational Methods in Engineering, 30(4), 2761-2775. https://doi.org/10.1007/s11831-023-09884-2 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0 Seed, H. B. (1976). Evaluation of soil liquefaction potantial for level ground during earthquakes. Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249-1273. https://doi.org/doi:10.1061/JSFEAQ.0001662 Shakir Mohamed, M. R., Michael Figurnov, Anfriy Mnih. (2020). Monte Carlo gradient estimation in machine learning. Macjine Learning Research, 1-63. Stamatopoulos, C. A. (2010). An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dynamics and Earthquake Engineering, 30(8), 662-678. https://doi.org/https://doi.org/10.1016/j.soildyn.2010.02.008 Sujon, K. M., Hassan, R. B., Towshi, Z. T., Othman, M. A., Samad, M. A., & Choi, K. (2024). When to Use Standardization and Normalization: Empirical Evidence From Machine Learning Models and XAI. IEEE Access, 12, 135300-135314. https://doi.org/10.1109/ACCESS.2024.3462434 Tonyalı, İ., Akbas, S. O., Beyaz, T., Kayabalı, K., & Gokceoglu, C. (2024). Case study of a foundation failure induced by cyclic softening of clay during the 2023 Kahramanmaraş earthquakes. Engineering Geology, 332, 107477. https://doi.org/https://doi.org/10.1016/j.enggeo.2024.107477 Tsai, P. H., Lee, D. H., Kung, G. T.-C., & Hsu, C. H. (2010). Effect of content and plasticity of fines on liquefaction behaviour of soils. Quarterly Journal of Engineering Geology and Hydrogeology - Q J ENG GEOL HYDROGEOL, 43, 95-106. https://doi.org/10.1144/1470-9236/08-019 Tsukamoto, Y., & Ishihara, K. (2010). Analysis on Settlement of Soil Deposits Following Liquefaction During Earthquakes. Soils and Foundations, 50(3), 399-411. https://doi.org/https://doi.org/10.3208/sandf.50.399 Tsukamoto, Y., Ishihara, K., & Sawada, S. (2004). Settlement of Silty Sand Deposits Following Liquefaction During Earthquakes. Soils and Foundations, 44(5), 135-148. https://doi.org/https://doi.org/10.3208/sandf.44.5_135 van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373-440. https://doi.org/10.1007/s10994-019-05855-6 Wahab, S., Salami, B. A., AlAteah, A. H., Al-Tholaia, M. M. H., & Alahmari, T. S. (2024). Exploring the interrelationships between composition, rheology, and compressive strength of self-compacting concrete: An exploration of explainable boosting algorithms. Case Studies in Construction Materials, 20, e03084. https://doi.org/https://doi.org/10.1016/j.cscm.2024.e03084 Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190-197. https://doi.org/https://doi.org/10.1016/j.patrec.2020.05.035 Wei, X., Yang, Z., & Yang, J. (2023). Cyclic failure characteristics of silty sands with the presence of initial shear stress. Soil Dynamics and Earthquake Engineering, 171, 107909. https://doi.org/https://doi.org/10.1016/j.soildyn.2023.107909 Wu, S., Zhang, J.-M., & Wang, R. (2021). Machine learning method for CPTu based 3D stratification of New Zealand geotechnical database sites. Advanced Engineering Informatics, 50, 101397. https://doi.org/https://doi.org/10.1016/j.aei.2021.101397 Xinghuo, Y., Efe, M. O., & Kaynak, O. (2002). A general backpropagation algorithm for feedforward neural networks learning. IEEE Transactions on Neural Networks, 13(1), 251-254. https://doi.org/10.1109/72.977323 Xu, L., Chen, Y., Zuo, L., Sun, M., & Li, W. (2024). An experimental investigation on undrained cyclic behaviour of a saturated intact loess. Soil Dynamics and Earthquake Engineering, 181, 108668. https://doi.org/https://doi.org/10.1016/j.soildyn.2024.108668 Xueqian, N., Ye, B., Zhang, F., & Feng, X. (2021). Influence of Specimen Preparation on the Liquefaction Behaviors of Sand and Its Mesoscopic Explanation. Journal of Geotechnical and Geoenvironmental Engineering, 147, 04020161. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002456 Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K.,…Stokoe, K. H. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-833. https://doi.org/doi:10.1061/(ASCE)1090-0241(2001)127:10(817) Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. Journal of Systems and Software, 85(11), 2541-2552. https://doi.org/https://doi.org/10.1016/j.jss.2012.05.073 Zhang, W., Gu, X., Hong, L., Han, L., & Wang, L. (2023). Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Applied Soft Computing, 136, 110066. https://doi.org/https://doi.org/10.1016/j.asoc.2023.110066 Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of Translational Medicine, 4(2), 30. https://atm.amegroups.org/article/view/8847 Zhang, Z., Ding, S., & Sun, Y. (2021). MBSVR: Multiple birth support vector regression. Information Sciences, 552, 65-79. https://doi.org/https://doi.org/10.1016/j.ins.2020.11.033 Zhao, T., Shen, F., & Xu, L. (2024). Review and comparison of machine learning methods in developing optimal models for predicting geotechnical properties with consideration of feature selection. Soils and Foundations, 64(6), 101523. https://doi.org/https://doi.org/10.1016/j.sandf.2024.101523 Zhou, G. Y., Pan, K., & Yang, Z. X. (2023). Energy-based assessment of cyclic liquefaction behavior of clean and silty sand under sustained initial stress conditions. Soil Dynamics and Earthquake Engineering, 164, 107609. https://doi.org/https://doi.org/10.1016/j.soildyn.2022.107609 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98209 | - |
| dc.description.abstract | 土壤液化一直是大地工程領域中長期關注的重要議題,而動態三軸試驗 (Cyclic Triaxial Test) 作為實驗室中模擬地震載重下,研究土壤行為主要的土壤單元試驗。其中,作為施加荷載能量的關鍵參數的循環剪應力比 (Cyclic Stress Ratio, CSR) ,其設定往往依賴試體的物理性質、試驗條件和試驗者的經驗進行推估。然而,不同參數組合將導致CSR值有所變化,使得在試驗設計階段難以事先準確掌握合適的CSR值,進而影響試驗成功率與數據品質。為解決此問題,本研究蒐集並整理來自23篇文獻,共近千筆的動態三軸試驗資料,建立多種機器學習模型以協助預測不同試體參數所對應之CSR值,希望提供一套可用應於試驗設計階段之預測工具。研究流程分為三階段,第一階段針對資料進行前處理與特徵工程,包含缺失值填補、數值變數標準化與類別變數做編碼等;第二階段使用七種監督式學習方法,包含五種傳統機器學習模型 (Random Forest、CatBoost、XGBoost、Explainable Boosting Machine (EBM),與Support Vector Machine (SVM)) 以及兩種深度學習模型 (Artificial Neural Network (ANN) 與Bayesian Neural Network (BNN)),並使用決定係數R2和誤差指標 (如MAE、MSE與RMSE) 做為迴歸預測表現之評估依據;第三階段則進一步CSR與循環剪切次數 (N) 之關係建立下限曲線作為二元分類基準,將迴歸問題轉化為液化與非液化樣本之分類任務,並加入特徵解釋性與預測不確定性分析。研究結果顯示,CatBoost、XGBoost與Random Forest整體表現最佳。主要特徵 (如初始孔隙比、循環剪切次數與細粒料含量等) 即可支撐預測能力。MICE為最穩定之補值方式。於深度學習模型中,手動調參表現優於Grid search,可有效避免測試集表現劣化的問題。EBM模型之變數貢獻圖可提供解釋性,BNN模型則能提供預測結果的信賴區間,能量化不確定性。 | zh_TW |
| dc.description.abstract | Soil liquefaction has long been a critical issue in geotechnical engineering. Among the laboratory methods developed to investigate this phenomenon, the cyclic triaxial test is one of the most important experiments for simulating soil behavior under earthquake loading. A key parameter in this test is the Cyclic Stress Ratio (CSR), which reflects the magnitude of loading energy applied to the soil specimen. However, the appropriate CSR value often depends on the specimen’s physical properties, the experimental conditions, and the experience of the test operator. As a result, accurately determining the CSR beforehand is challenging, which may affect the success rate of the test and the quality of the resulting data.
To address the problem, this study collected nearly 1000 cyclic triaxial test records from 23 academic papers and theses, and establish multiple machine learning models to predict the target variable –CSR, aiming to provide a useful reference during the test design stage. The study is divided into three main parts. The first part involves data preprocessing and feature engineering, including missing value imputation, numerical variable standardization, and categorical variable encoding. The second part focuses on model development using seven supervised models, including five machine learning models (Random Forest, CatBoost、XGBoost、Explainable Boosting Machine (EBM), and Support Vector Machine (SVM)) and two deep learning models (Artificial Neural Network (ANN) and Bayesian Neural Network (BNN)). Model performance was evaluated using the coefficient of determination (R²) and error metrics. In the third stage, the study further converted the regression task into a binary classification problem by defining a trial-and-error lower bound curve based on the CSR-N relationship to distinguish between liquefied and non-liquefied samples. This stage also incorporated model interpretability and prediction uncertainty analysis. The results show that CatBoost, XGBoost, and Random Forest achieved the best overall performance. Moreover, the models were able to make accurate predictions using only a set of primary features (e.g., initial void ratio e₀, number of loading cycles N, and fine content fc). Among the imputation methods tested, Multiple Imputation by Chained Equations (MICE) produced the most stable outcomes. Manual hyperparameter tuning outperformed Grid search techniques in deep learning models. Finally, EBM provided interpretable visualizations of individual feature contributions, while BNN offered prediction intervals that helped quantify uncertainty and enhance confidence in the results. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:20:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:20:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xv 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 液化行為、循環剪應力比與動力三軸試驗 4 2.1.1 液化機制 4 2.1.2 循環剪應力比 (CSR) 之定義與於液化評估中的角色 8 2.1.3 液化判定與CSR分析 9 2.2 機器學習 12 2.2.1 機器學習種類 12 2.2.2 機器學習方法於大地工程之應用 16 第三章 研究方法 27 3.1 數據來源與描述 28 3.2 數據前處理與特徵工程 35 3.2.1 缺失值處理方式 35 3.2.2 類別型欄位轉換 39 3.2.3 數值型欄位標準化 41 3.3 模型介紹 43 3.3.1 模型架構與特點 44 3.4 模型訓練與評估方式 57 3.4.1 超參數 58 3.4.2 參數調整與交叉驗證 65 3.4.3 模型評估指標 68 第四章 模型表現與預測結果比較 73 4.1 模型表現分析 73 4.1.1 超參數設定與其影響 73 4.2 預測結果比較 89 4.2.1 不同調參方式 106 4.2.2 不同特徵組合 107 4.2.3 不同填補方式 109 4.3 視覺化分析 111 4.3.1 預測值與真值對照 111 4.3.2 特徵重要性 114 4.3.3 模型訓練時間比較 128 第五章 EBM與BNN於液化數據之應用 134 5.1 分類模型數據說明 134 5.2 EBM模型分析 137 5.2.1 回歸預測結果 139 5.2.2 模型分類結果 141 5.2.3解釋性分析 143 5.3 BNN模型分析 149 5.3.1 回歸預測結果 151 5.3.2 模型分類結果 155 5.3.3 不確定性分析 158 第六章 結論與建議 159 6.1 結論 159 6.2 建議 162 參考文獻 167 附錄A 超參數影響分析與模型效能趨勢 177 附錄B 最佳模型參數設定總覽 190 附錄C 未填補資料下手動調參模型之 SHAP圖 201 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 動態三軸試驗 | zh_TW |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 循環剪應力比 | zh_TW |
| dc.subject | Cyclic stress ratio (CSR) | en |
| dc.subject | Machine learning | en |
| dc.subject | Deep learning | en |
| dc.subject | Cyclic triaxial test | en |
| dc.subject | Soil liquefaction | en |
| dc.title | 應用機器學習於動態三軸試驗資料預測液化循環剪應力比 | zh_TW |
| dc.title | 剪應力比 Application of Machine Learning for Predicting Cyclic Stress Ratio for Liquefaction from Cyclic Triaxial Test Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳柏華;黃郁惟;朱民虔 | zh_TW |
| dc.contributor.oralexamcommittee | Albert Y. Chen;Yu-Wei Hwang;Min-Chien Chu | en |
| dc.subject.keyword | 土壤液化,動態三軸試驗,循環剪應力比,機器學習,深度學習, | zh_TW |
| dc.subject.keyword | Soil liquefaction,Cyclic triaxial test,Cyclic stress ratio (CSR),Machine learning,Deep learning, | en |
| dc.relation.page | 208 | - |
| dc.identifier.doi | 10.6342/NTU202502436 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 11.56 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
