請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 徐均侑 | zh_TW |
| dc.contributor.author | Chun-Yu Hsu | en |
| dc.date.accessioned | 2025-07-30T16:20:36Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | 1. Brossard, C., Monnier, J. C., Barricau, P., et al. (2009). Principles and applications of particle image velocimetry. 1.
2. Castiglia, M., de Magistris, F. S., & Koseki, J. (2019). Uplift of buried pipelines in liquefiable soils using shaking table apparatus Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (pp. 1638-1646): CRC Press. 3. Chian & Madabhushi, S. P. G. (2012). Effect of buried depth and diameter on uplift of underground structures in liquefied soils. Soil Dynamics and Earthquake Engineering, 41, 181-190. 4. Chian,Tokimatsu, K., & Madabhushi S. P. G. (2014). Soil Liquefaction–Induced Uplift of Underground Structures: Physical and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 140(10), 04014057. 5. Chou, J. C., Kutter, B. L., Travasarou, T., & Chacko, J. M. (2011). Centrifuge Modeling of Seismically Induced Uplift for the BART Transbay Tube [Article]. Journal of Geotechnical and Geoenvironmental Engineering, 137(8), 754-765. 6. Council, N. R. (1930). Liquefaction of soils during earthquakes. National Academy Press, Washington, DC (1985),p.240. 7. De Alba, P. A. (1975). Determination of soil liquefaction characteristics by a large-scale laboratory test. University of California, Berkeley. 8. Ecemis, N., Valizadeh, H., & Karaman, M. (2021). Sand-granulated rubber mixture to prevent liquefaction-induced uplift of buried pipes: a shaking table study. Bulletin of Earthquake Engineering, 19(7), 2817-2838. 9. Guoxing, C., Enquan, Z., Zhihua, W., et al. (2016). Experimental investigation on fluid characteristics of medium dense saturated fine sand in pre- and post-liquefaction. Bulletin of Earthquake Engineering, 14(8), 2185-2212. 10. Huang, B., Liu, J., Lin, P., & Ling, D. (2014). Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test. Scientific World Journal, 2014, 838546. 11. Ko,Y. Y., Wang, H.-W., & Jheng, K.-Y. (2023). An experimental study of the impact of liquefaction-induced displacement on buried pipelines for buildings. Earthquake Engineering & Structural Dynamics, 52(12), 3679-3701. 12. Ko,Y. Y., Tsai, T. Y., & Jheng, K. Y. (2023). Full-scale shaking table tests on soil liquefaction-induced uplift of buried pipelines for buildings. Earthquake Engineering & Structural Dynamics, 52(5), 1486-1510. 13. Kosekt, J., Matsuo, O., & KoGa, Y. (1997). Uplift Behavior of Underground Structures Caused By Liquefaction of Surrounding Soil During Earthquake. Soils and Foundations, 37(1), 97-108. 14. Ling, H., Asce, M., Mohri, Y., et al. (2003). Centrifugal Modeling of Seismic Behavior of Large-Diameter Pipe in Liquefiable Soil. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 129. 15. Lirer, S., & Mele, L. (2019). On the apparent viscosity of granular soils during liquefaction tests. Bulletin of Earthquake Engineering, 17(11), 5809-5824. 16. Lu, C.-W., Lin, Y.-F., & Lee, W.-L. (2024). An analytical model for liquefaction-induced manhole uplifting. Soil Dynamics and Earthquake Engineering, 180, 108562. 17. Mele, L. (2022). An experimental study on the apparent viscosity of sandy soils: from liquefaction triggering to pseudo-plastic behaviour of liquefied sands. Acta Geotechnica, 17(2), 463-481. 18. Mele, L., Lirer, S., & Flora, A. (2024). Experimental study of factors affecting the viscosity-based pore pressure generation model and the pseudo plastic behaviour of liquefiable soils. Soils and Foundations, 64(3), 101466. 19. Ng, C. W. W., & Springman, S. M. (1994). Uplift resistance of buried pipelines in granular materials. In Proceedings of Centrifuge ’94 (Vol. 1, pp. 753–758). Singapore. 20. Nokande, S., Jafarian, Y., & Haddad, A. (2023). Shaking table tests on the liquefaction-induced uplift displacement of circular tunnel structure. Underground Space, 10, 182–198 21. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. 22. Robert, D. J., & Thusyanthan, N. I. (2018). Uplift Resistance of Buried Pipelines in Partially Saturated Sands. Computers and Geotechnics, 97, 7-19. 23. Saeedzadeh, R., & Hataf, N. (2011). Uplift response of buried pipelines in saturated sand deposit under earthquake loading. Soil Dynamics and Earthquake Engineering, 31(10), 1378-1384. 24. Sasaki, T., & Tamura, K. (2004). Prediction of liquefaction-induced uplift displacement of underground structures. 36th Joint Meeting of the U.S.-Japan Panel on Wind and Seismic Effects, Tsukuba, Japan. 25. Sawicki, A., & Mierczyński, J. (2009). On the behaviour of liquefied soil. Computers and Geotechnics, 36(4), 531-536. 26. Seed, H. B., Martin Philippe, P., & Lysmer, J. (1976). Pore-Water Pressure Changes during Soil Liquefaction. Journal of the Geotechnical Engineering Division, 102(4), 323-346. 27. Seyedi, M. (2024). An Empirical Function to Predict the Liquefaction-Induced Uplift of Circular Tunnels. Transportation Infrastructure Geotechnology, 11(5), 2973-2998. 28. Sharafi, H., & Parsafar, P. (2016). Seismic simulation of liquefaction-induced uplift behavior of buried pipelines in shallow ground. Arabian Journal of Geosciences, 9(3), 215. 29. Sudevan, P. B., Boominathan, A., & Banerjee, S. (2020). Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods. Geomechanics and Engineering, 23(4), 365-379. 30. Sudevan Priya, B., Boominathan, A., & Banerjee, S. (2020). Numerical Study of Liquefaction-Induced Uplift of Underground Structure. International Journal of Geomechanics, 20(2), 06019020. 31. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice (3rd ed.). John Wiley & Sons. 32. Thusyanthan, I., Mesmar, S., Wang, J., & Haigh, S. (2010). Uplift resistance of buried pipelines and DNV-RP-F110 guidelines. Journal Name, Volume(Issue), pages. 33. Tobita, T., Kang, G.-C., & Iai, S. (2011). Centrifuge Modeling on Manhole Uplift in a Liquefied Trench. Soils and Foundations, 51(6), 1091-1102. 34. Tobita, T., Kang, G.-C., & Iai, S. (2012). Estimation of Liquefaction-Induced Manhole Uplift Displacements and Trench-Backfill Settlements. Journal of Geotehnical and Geoenvironmental Engineering, 138(4), 491-499. 35. Towhata, I., Orense, R. P., & Toyota, H. (1999). Mathematical Principles in Prediction of Lateral Ground Displacement Induced by Seismic Liquefaction. Soils and Foundations, 39(2), 1-19. 36. Uzuoka, R., Yashima, A., Kawakami, T., & Konrad, J. M. (1998). Fluid dynamics based prediction of liquefaction induced lateral spreading. Computers and Geotechnics, 22(3), 243-282. 37. Valizadeh, H., & Ecemis, N. (2022). Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling. Transportation Geotechnics, 33, 100719. 38. Varghese, R. M., & Latha, G. M. (2014). Shaking table tests to investigate the influence of various factors on the liquefaction resistance of sands. Natural Hazards, 73(3), 1337-1351. 39. White, D., Take, W. A., & Bolton, M. (2003). Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry. Geotechnique, 53, 619-631. 40. Yasuda, S., Nagase, H., Itafuji, S., Sawada, H., & Mine, K. (1995). Shaking table tests on floatation of buried pipes due to liquefaction of backfill sands. Proceedings of the 5th US–Japan Workshop on Earthquake Resistance Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Utah. 41. Zheng, G., Yang, P., Zhou, H., et al. (2019). Evaluation of the earthquake induced uplift displacement of tunnels using multivariate adaptive regression splines. Computers and Geotechnics, 113, 103099. 42. 陳正興、陳家漢 (2014)。地震引致的土壤液化與側潰現象。《科學發展》,498,12–17。 43. 王昊擎 (2023)。以振動台試驗探討土壤液化引致地下管線上浮之機制 (碩士論文)。國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98208 | - |
| dc.description.abstract | 地震誘發之土壤液化現象對地下結構物安全構成重大威脅,尤其在飽和鬆散砂土中,孔隙水壓迅速累積導致土壤有效應力下降,使地層如流體般失去支撐力,進而引發地表沉陷、地下管線上浮以及噴砂等災害,其中地下管線上浮,使接頭變形導致管線破裂,對民眾生活機能造成重大影響,故地下管線因土壤液化導致上浮破壞之相關研究值得深入探討。液化期間地下管線與土壤的相互作用複雜,浮力與阻抗力之動態變化難以量測,致使過往相關研究多侷限於經驗性描述與簡化力平衡,缺乏可反映時變過程與細部力學機制之完整系統。為突破上述限制,本研究使用 1g 振動台模型試驗與非侵入式粒子影像測速法 (Particle Image Velocimetry, PIV),觀測地下管線於液化條件下之動態上浮行為與周圍土體變形過程。透過攝影與影像處理,成功量測管線在不同震動時刻之運動歷程,並追蹤管線上方土壤剪裂帶之發展。本研究利用PIV 技術揭示剪裂帶主要自管線頂部向兩側發展,震動期間近楔型破壞面,說明土壤失去剪力強度後對結構物之抵抗力急遽下降,進一步導致管線迅速上浮。在理論分析方面,本研究建構一套土壤剪裂帶發展、黏滯阻力、孔隙水壓及覆土載重隨地下管線上浮變化之力學模式,並以牛頓第二運動定律為基礎推導出位移的歷時方程式,進一步簡化模型推導解析解,並與數值解法進行比較,結果顯示兩者在計算上吻合,但與實驗觀測結果相比,解析與數值模型皆出現明顯偏差。進一步分析發現,主要誤差來源在於模型初期假設黏滯阻力為常數,未能反映液化過程中土壤剪應變速率與孔隙水壓急遽變化所導致之黏滯特性演化。因此,本研究修正模式中之黏滯係數假設,改採時變黏滯係數表示方式,使預測結果更貼近實際試驗觀察,亦有助於反映液化土體力學行為之非線性與時變特性。 | zh_TW |
| dc.description.abstract | Soil liquefaction induced by earthquakes poses a significant hazard to underground infrastructure. In saturated loose sands, the buildup of excess pore water pressure reduces effective stress, causing the ground to lose shear strength and behave like a fluid. This can lead to ground settlement, sand boils, and particularly, uplift of buried pipelines. Uplift-induced deformation often results in joint failure and rupture of pipelines, compromising essential lifeline services. Despite its importance, the uplift behavior of pipelines during liquefaction remains poorly understood due to the complexity of soil–structure interaction and the difficulty of measuring dynamic forces during shaking. This study combines 1g shaking table experiments with non-intrusive Particle Image Velocimetry (PIV) to investigate the uplift response of pipelines buried in liquefiable soil. PIV analysis revealed the formation of shear bands initiating from the pipe crown and propagating outward in a wedge-shaped pattern, correlating with the loss of confinement and rapid uplift. A dynamic mechanical model was developed, incorporating shear band evolution, viscous resistance, excess pore pressure, and the reduction in overburden weight as uplift progresses. Based on Newton’s second law, a time-dependent displacement equation was derived and solved using both analytical and numerical approaches. While the two solutions agreed closely, discrepancies with experimental data were noted. Further investigation indicated that the assumption of a constant viscous coefficient led to underestimation of the uplift response under certain shaking conditions. By introducing a time-dependent viscous coefficient that accounts for evolving shear strain rates and pore pressure conditions, the modified model achieved improved agreement with the observed behavior, reflecting the nonlinear and transient nature of liquefied soils. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:20:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:20:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口委審定書 i
誌 謝 ii 摘 要 iv ABSTRACT v 目 次 vii 圖 次 xi 表 次 xvii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與步驟 2 1.3 研究架構 3 第二章 文獻回顧 5 2.1 地下管線因液化引致上浮機制 5 2.1.1 土壤液化引致災害 5 2.1.2 地下管線力學分析 8 2.1.3 影像分析 12 2.2 地下管線上浮參數分析 16 2.2.1 結構物周圍土壤相對密度 16 2.2.2 最大加速度 17 2.2.3 地下結構物尺寸 19 2.2.4 管線埋置深度 21 2.2.5 影響因素敏感度分析 23 2.3 相關研究案例回顧 28 2.3.1 1-g振動台試驗 28 第三章 振動台實驗設計與結果分析 31 3.1 模型尺寸與邊界效應 31 3.2 振動台實驗設計 32 3.2.1 MTS單軸向振動台 32 3.2.2 剛性盒設計 33 3.2.3 量測數據設備 35 3.2.4 攝影設備 38 3.3 振動台試驗材料 40 3.3.1 試驗砂基本物理性質 40 3.3.2 管線材質與尺寸 42 3.4 實驗流程與步驟 43 3.4.1 架設感測器 43 3.4.2 填製試體與管線定位 44 3.4.3 試驗前準備 45 3.4.4 試驗後處理 47 3.5 試驗規劃與結果 48 3.5.1 試驗1 49 3.5.2 試驗2 50 3.5.3 試驗3 52 3.5.4 試驗4 53 3.5.5 試驗5 54 3.5.6 試驗結果與參數 56 3.6 粒子圖像測速法 (Particle Image Velocimetry, PIV) 分析 57 3.6.1 以PIV分析管線運動時破壞模式 57 3.6.2 以PIV分析管線運動時位移量 59 3.7 影像分析結果比較 69 第四章 地下結構物理論推導與分析 71 4.1 人孔理論上浮分析 71 4.1.1 地下結構物—人孔之理論模式 71 4.1.2 數值理論方法 78 4.1.3 人孔理論模式驗證 79 4.2 地下管線穩定度分析 81 4.2.1 地下結構物力學模型推導 81 4.2.2 地下管線穩定性分析 82 4.2.3 超額孔隙水壓實驗計算 85 4.2.4 液化土壤的黏滯力行為 86 4.3 地下管線理論上浮分析 87 4.4 簡化理論管線上浮模型 91 4.5 文獻資料驗證 93 4.5.1 Chian et al. (2014) 93 4.5.2 Nokande et al. (2023) 97 第五章 管線上浮量討論 101 5.1 不同操作變因對管線上浮反應之比較 101 5.1.1 最大加速度 101 5.1.2 周圍土壤相對密度 103 5.2 黏滯係數參數分析 104 5.2.1 牛頓流體理論 104 5.2.2 初始黏滯係數 107 5.2.3 黏滯係數假設與驗證 111 5.3 本研究試驗方法 116 5.3.1 試驗1 117 5.3.2 試驗2 118 5.3.3 試驗3 119 5.3.4 試驗4 120 5.3.5 試驗5 121 5.3.6 綜合比較與討論 122 5.3.7 黏滯係數參數討論 124 5.4 比較不同分析方法預測之管線上浮量 126 第六章 結論與建議 133 6.1 結論 133 6.2 後續研究建議 136 參考文獻 137 附錄一:碩士學位考試口試委員提問與答覆表 142 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 地下管線上浮 | zh_TW |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 黏滯係數 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 超額孔隙水壓 | zh_TW |
| dc.subject | Soil liquefaction | en |
| dc.subject | Shaking table test | en |
| dc.subject | Pipeline uplift | en |
| dc.subject | Viscous damping | en |
| dc.subject | Excess pore water pressure | en |
| dc.title | 液化引致地下管線上浮量之影像分析及解析模型 | zh_TW |
| dc.title | An Analytical Model for Liquefaction-induced Pipeline Uplifting incorporating Image Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 葉馥瑄 | zh_TW |
| dc.contributor.coadvisor | Fu-Hsuan Yeh | en |
| dc.contributor.oralexamcommittee | 朱民虔 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Chien Chu | en |
| dc.subject.keyword | 土壤液化,地下管線上浮,振動台試驗,黏滯係數,超額孔隙水壓, | zh_TW |
| dc.subject.keyword | Soil liquefaction,Pipeline uplift,Shaking table test,Excess pore water pressure,Viscous damping, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202502325 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2028-08-09 | 9.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
