請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98198完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 諶玉真 | zh_TW |
| dc.contributor.advisor | Yu-Jane Sheng | en |
| dc.contributor.author | 田沛茵 | zh_TW |
| dc.contributor.author | Pei-Yin Tien | en |
| dc.date.accessioned | 2025-07-30T16:18:24Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1. Y. Xu, “Nanofluidics: A New Arena for Materials Science,” Advanced Materials 30, 1702419 (2018).
2. Z. Dong, C. Zhang, H. Peng, J. Gong, and Q. Zhao, “Modular design of solar-thermal nanofluidics for advanced desalination membranes,” Journal of Materials Chemistry A 8, (2020). 3. M. L. Kovarik, and S. C. Jacobson, “Nanofluidics in Lab-on-a-Chip Devices,” Analytical Chemistry 81, 7133 (2009). 4. F. Persson, and J. O. Tegenfeldt, “DNA in nanochannels—directly visualizing genomic information,” Chemical Society Reviews 39, (2010). 5. S. L. Levy, and H. G. Craighead, “DNA manipulation, sorting, and mapping in nanofluidic systems,” Chemical Society Reviews 39, (2010). 6. R. Chantiwas, S. Park, S. A. Soper, B. C. Kim, S. Takayama, V. Sunkara, H. Hwang, and Y.-K. Cho, “Flexible fabrication and applications of polymer nanochannels and nanoslits,” Chemical Society Reviews 40, (2011). 7. Y. T. Cheng, H. Y. Chang, H. K. Tsao, and Y. J. Sheng, “Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects,” Phys Fluids 34, (2022). 8. B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, and A. K. Geim, “Molecular transport through capillaries made with atomic-scale precision,” Nature 2016 538:7624 538, (2016). 9. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials 22, (2010). 10. R. K. Mishra, J. Sarkar, I. Chianella, S. Goel, and H. Y. Nezhad, “Black phosphorus: The rise of phosphorene in 2D materials applications,” Next Materials 4, (2024). 11. G. Schusteritsch, M. Uhrin, and C. J. Pickard, “Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material,” Nano Letters 16, (2016). 12. X. Yang, R. Zhang, J. Pu, Z. He, and L. Xiong, “2D graphene and h-BN layers application in protective coatings,” Corrosion Reviews 39, (2021). 13. G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semiconductors and Semimetals 95, (2016). 14. P. Innocenzi, and L. Stagi, “From Defects to Photoluminescence in h-BN 2D and 0D Nanostructures,” Accounts of Materials Research (2024). 15. C. Yu, J. Zhang, W. Tian, X. Fan, and Y. Yao, “Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites,” RSC Advances 8, (2018). 16. W. Wegner, K. J. Fijalkowski, and W. Grochala, “A low temperature pyrolytic route to amorphous quasi-hexagonal boron nitride from hydrogen rich (NH4)3Mg(BH4)5,” Dalton Transactions 49, (2020). 17. P. Innocenzi, and L. Stagi, “From Defects to Photoluminescence in h-BN 2D and 0D Nanostructures,” Accounts of Materials Research 5, 413 (2024). 18. C. Jin, F. Lin, K. Suenaga, and S. Iijima, “Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments,” Physical Review Letters 102, (2009). 19. X. Wu, and Q. Han, “Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous,” Comp Mater Sci 184, (2020). 20. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural Defects in Graphene,” (2010). 21. S. A. Shevlin, and Z. X. Guo, “Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes,” Physical Review B 76, (2007). 22. A. Keerthi, S. Goutham, Y. You, P. Iamprasertkun, R. A. W. Dryfe, A. K. Geim, and B. Radha, “Water friction in nanofluidic channels made from two-dimensional crystals,” Nature Communications 2021 12:1 12, (2021). 23. J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten, C. Chipot, and E. Tajkhorshid, “Scalable molecular dynamics on CPU and GPU architectures with NAMD,” J Chem Phys 153, (2020). 24. Y. Wu, L. K. Wagner, and N. R. Aluru, “Hexagonal boron nitride and water interaction parameters,” The Journal of Chemical Physics 144, (2016). 25. E. Wagemann, Y. B. Wang, S. Das, and S. K. Mitra, “On the wetting translucency of hexagonal boron nitride,” Phys Chem Chem Phys 22, 7710 (2020). 26. A. P. Markesteijn, R. Hartkamp, S. Luding, and J. Westerweel, “A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel,” The Journal of Chemical Physics 136, (2012). 27. J. L. F. Abascal, and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” The Journal of Chemical Physics 123, (2005). 28. C. Vega, and E. de Miguel, “Surface tension of the most popular models of water by using the test-area simulation method,” The Journal of Chemical Physics 126, (2007). 29. M. A. González, and J. L. F. Abascal, “The shear viscosity of rigid water models,” J Chem Phys 132, (2010). 30. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,” Journal of Computational Chemistry 26, (2005). 31. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” Journal of Molecular Graphics 14, (1996). 32. U. F. W. Behringer, J. Finders, H. Hiura, Y. Takabayashi, T. Takashima, K. Emoto, J. Choi, and P. Schumaker, Nanoimprint system development and status for high volume semiconductor manufacturing (2016). 33. A. K. Verma, and A. G. Rajan, “Surface Roughness Explains the Observed Water Contact Angle and Slip Length on 2D Hexagonal Boron Nitride,” Langmuir 38, (2022). 34. A. Budi, and T. R. Walsh, “A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface,” Langmuir 35, (2019). 35. R. C. Dutta, S. Khan, and J. K. Singh, “Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study,” Fluid Phase Equilibria 302, (2011). 36. S. L. Mayo, B. D. Olafson, and W. A. Goddard, “DREIDING: a generic force field for molecular simulations,” (2002). 37. A. G. Rajan, M. S. Strano, and D. Blankschtein, “Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid–Liquid Electrostatic Interactions,” Nano Letters 19, (2019). 38. Z. Feng, Z. Lei, Y. Yao, J. Liu, B. Wu, and W. Ouyang, “Anisotropic Interfacial Force Field for Interfaces of Water with Hexagonal Boron Nitride,” Langmuir (2023). 39. T.-Y. Wang, H.-Y. Chang, G.-Y. He, H.-K. Tsao, and Y.-J. Sheng, “Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width dependent density,” Journal of Molecular Liquids 352, 118701 (2022). 40. W. A. Zisman, Relation of the equilibrium contact angle to liquid and solid constitution (American Chemical Society, Washington, District of Columbia, 1964). 41. C. H. Kung, P. K. Sow, B. Zahiri, and W. Mérida, “Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities,” Adv Mater Interfaces 6, (2019). 42. G.-X. Li, Y. Liu, B. Wang, X.-M. Song, E. Li, and H. Yan, “Preparation of transparent BN films with superhydrophobic surface,” Applied Surface Science 254, (2008). 43. L. B. Boinovich, A. M. Emelyanenko, A. S. Pashinin, C. H. Lee, J. Drelich, and Y. K.Yap, “Origins of Thermodynamically Stable Superhydrophobicity of Boron Nitride Nanotubes Coatings,” (2011). 44. V. A. S. Kandadai, V. Gadhamshetty, and B. K. Jasthi, “Effect of buffer layer and substrate growth temperature on the microstructural evolution of hexagonal boron nitride thin films,” Surface and Coatings Technology 447, (2022). 45. Y. W. Lu, H. Y. Chang, H. K. Tsao, and Y. J. Sheng, “Surface wettability and capillary flow of water in nanoslits of two-dimensional hexagonal-boron nitride,” Phys Fluids 36, (2024). 46. H.-Y. Huang, Y.-H. Tsao, Y.-J. Sheng, and H.-K. Tsao, “Peculiar wetting behavior of nanodroplets comprising antagonistic alcohol-water mixtures on a graphene surface,” Surf Interfaces 51, (2024). 47. J. C. Bird, S. Mandre, and H. A. Stone, “Short-Time Dynamics of Partial Wetting,” Physical Review Letters 100, (2008). 48. E. Wagemann, Y. Wang, S. Das, and S. K. Mitra, “Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy,” Phys Chem Chem Phys 22, 2488 (2020). 49. M. Neek-Amal, F. M. Peeters, I. V. Grigorieva, and A. K. Geim, “Commensurability Effects in Viscosity of Nanoconfined Water,” ACS Nano 10, 3685 (2016). 50. U. Raviv, P. Laurat, and J. Klein, “Fluidity of water confined to subnanometre films,”Nature 2001 413:6851 413, (2001). 51. C. Fang, X. Wu, F. Yang, and R. Qiao, “Flow of quasi-two dimensional water in graphene channels,” J Chem Phys 148, 064702 (2018). 52. Y. Chen, Z. Xu, M. Zhan, and X. Yang, “Viscosity and Structure of Water and Ethanol within GO Nanochannels: A Molecular Simulation Study,” J Phys Chem B 124, 10961 (2020). 53. F. Li, I. A. Korotkin, and S. A. Karabasov, “Rheology of Water Flows Confined between Multilayer Graphene Walls,” Langmuir 36, 5633 (2020). 54. A. Dhinojwala, and S. Granick, “Relaxation Time of Confined Aqueous Films under Shear,” Journal of the American Chemical Society 119, (1997). 55. W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan, and Q. Zheng, “Strain engineering water transport in graphene nanochannels,” Physical Review E 84, (2011). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98198 | - |
| dc.description.abstract | 二維材料中的原子尺度缺陷會顯著影響奈米尺度下的流體行為。本研究使用 NAMD(Nanoscale Molecular Dynamics)進行分子動力學模擬,探討單空孔(monovacancy)與凸起(protrusion)缺陷對於水在六角氮化硼(h-BN)表面潤濕性及奈米流道中流動動力學的影響。透過針對兩種幾何構型:表面駐留的奈米液滴(sessile nanodrop)與管道內奈米水栓(liquid nanoplug)的模擬,結果顯示,單空孔缺陷可藉由降低水的接觸角(water contact angle)與系統內能來提升親水性;相對地,凸起缺陷則因亂度降低而提高接觸角。於奈米狹縫流動情境下,空孔缺陷導致速度分布由類塞狀轉變為拋物線型,並伴隨明顯的滑移速度下降。局部黏度分布呈現出與密度振盪一致的層狀結構。由 Hagen-Poiseuille 擬合得之有效黏度與滑移長度,皆在缺陷濃度趨近零時顯著上升。當引入空孔缺陷後,靠近壁面的密度分布產生肩狀特徵,進而擾亂受限水分子的空間排列並提升層間分子移動性,導致黏度下降,最終於高缺陷濃度下趨於飽和。 | zh_TW |
| dc.description.abstract | Atomic-scale defects in two-dimensional materials can substantially affect fluid behavior at the nanoscale. In this study, nanoscale molecular dynamics simulations are employed to investigate the effects of monovacancy and protrusion defects on the surface wettability and flow dynamics of water in h-BN nanoslits. By considering two configurations—sessile nanodroplet and liquid nanoplug—monovacancy defects are found to enhance hydrophilicity by lowering the water contact angle (WCA) and reducing internal energy, whereas protrusion defects increase the WCA by decreasing entropy. For nanoslit flows, the presence of vacancy defects induces a transition from plug-like to parabolic velocity profiles, accompanied by a pronounced reduction in slip velocity. The local viscosity distribution exhibits layering consistent with density oscillations. Both the effective viscosity and slip length—extracted via Hagen-Poiseuille fitting—increase rapidly as the defect concentration approaches zero. The introduction of vacancy defects produces shoulder-like features in the density profile near the walls, disrupting the spatial ordering of confined water. This effect leads to a decrease in viscosity, which eventually plateaus at sufficiently high defect concentrations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:18:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:18:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES vii LIST OF TABLES ix I. Introduction 1 II. Simulation Methods 5 III. Results and Discussion 11 A. Wettability of water on defective h-BN surfaces 11 B. Steady flow in nanoslits: local viscosity and slip length 19 C. Defect-concentration-dependent viscosity and slip length 27 IV. Conclusion 32 V. Supporting Information 34 Reference 36 | - |
| dc.language.iso | en | - |
| dc.subject | 結構缺陷 | zh_TW |
| dc.subject | 滑移長度 | zh_TW |
| dc.subject | 二維 h-BN材料 | zh_TW |
| dc.subject | 奈米流道 | zh_TW |
| dc.subject | 表面潤濕性 | zh_TW |
| dc.subject | 局部黏度 | zh_TW |
| dc.subject | nanoslit | en |
| dc.subject | slip length | en |
| dc.subject | local viscosity | en |
| dc.subject | surface wettability | en |
| dc.subject | structural defect | en |
| dc.subject | 2D h-BN material | en |
| dc.title | 缺陷密度對六角氮化硼奈米流道中表面潤濕性與流體流動之影響 | zh_TW |
| dc.title | Effects of defect density on surface wettability and fluid flow in h-BN nanoslits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曹恆光;魏憲鴻;陳儀帆 | zh_TW |
| dc.contributor.oralexamcommittee | Heng-Kwong Tsao;Hsien-Hung Wei;Yi-Fan Chen | en |
| dc.subject.keyword | 二維 h-BN材料,結構缺陷,表面潤濕性,奈米流道,局部黏度,滑移長度, | zh_TW |
| dc.subject.keyword | 2D h-BN material,structural defect,surface wettability,nanoslit,local viscosity,slip length, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202502478 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
