Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98192
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林新智zh_TW
dc.contributor.advisorHsin-Chih Linen
dc.contributor.author楊喨鈞zh_TW
dc.contributor.authorLiang-Jyun Yangen
dc.date.accessioned2025-07-30T16:16:56Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citation[1] A. Castellanos, A. Altube, J. Vega, E. García-Lecina, J. Díez, H. Grande, Effect of different post-treatments on the corrosion resistance and tribological properties of AZ91D magnesium alloy coated PEO, Surface and Coatings Technology 278 (2015) 99-107.
[2] T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, International materials reviews 64(3) (2019) 127-162.
[3] B. Navinšek, P. Panjan, I. Milošev, PVD coatings as an environmentally clean alternative to electroplating and electroless processes, Surface and Coatings Technology 116 (1999) 476-487.
[4] M. Bashir, M. Shafiq, M. Naeem, M. Zaka-ul-Islam, J. Díaz-Guillén, C. Lopez-Badillo, M. Zakaullah, Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding, Surface and Coatings Technology 327 (2017) 59-65.
[5] F. Hollstein, R. Wiedemann, J. Scholz, Characteristics of PVD-coatings on AZ31hp magnesium alloys, Surface and Coatings Technology 162(2-3) (2003) 261-268.
[6] X. Xu, W. Li, B. Wan, S. Jin, K. Chen, F. Su, Extremely improved the corrosion resistance and anti-wear behavior of aluminum alloy in 3.5% NaCl solution via amorphous CrAlN coating protection, Corros. Sci. 230 (2024) 111952.
[7] J.-W. Lee, S.-K. Tien, Y.-C. Kuo, The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering, Thin Solid Films 494(1-2) (2006) 161-167.
[8] Z. Xie, Z. Luo, Q. Yang, T. Chen, S. Tan, Y. Wang, Y. Luo, Improving anti-wear and anti-corrosion properties of AM60 magnesium alloy by ion implantation and Al/AlN/CrAlN/CrN/MoS2 gradient duplex coating, Vacuu 101 (2014) 171-176.
[9] M.K. Kulekci, Magnesium and its alloys applications in automotive industry, The International Journal of Advanced Manufacturing Technology 39 (2008) 851-865.
[10] J. Qin, X. Shi, H. Li, R. Zhao, G. Li, S. Zhang, L. Ding, X. Cui, Y. Zhao, R. Zhang, Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys, Green Chem. 24(20) (2022) 8113-8130.
[11] I. Polmear, Magnesium alloys and applications, Materials science and technology 10(1) (1994) 1-16.
[12] C. Blawert, N. Hort, K. Kainer, Automotive applications of magnesium and its alloys, Trans. Indian Inst. Met 57(4) (2004) 397-408.
[13] S.-J. Park, M.-K. Seo, Interface science and composites, Academic Press2011.
[14] C. Moosbrugger, Engineering properties of magnesium alloys, ASM International2017.
[15] C. Bettles, M. Barnett, Advances in wrought magnesium alloys: fundamentals of processing, properties and applications, Elsevier2012.
[16] S.S. Prasad, S. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, The role and significance of Magnesium in modern day research-A review, Journal of Magnesium and alloys 10(1) (2022) 1-61.
[17] F.A. Leckie, D.J. Bello, Strength and stiffness of engineering systems, Springer Science & Business Media2009.
[18] P. Klemens, R. Williams, Thermal conductivity of metals and alloys, IMeRv 31(1) (1986) 197-215.
[19] S. Li, X. Yang, J. Hou, W. Du, A review on thermal conductivity of magnesium and its alloys, Journal of Magnesium and Alloys 8(1) (2020) 78-90.
[20] C. Uher, Thermal conductivity of metals, Thermal conductivity: theory, properties, and applications, Springer2004, pp. 21-91.
[21] H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao, A. Tang, Thermal and electrical conductivity of binary magnesium alloys, JMatS 49 (2014) 3107-3124.
[22] R.B. Osman, M.V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials 8(3) (2015) 932-958.
[23] N. Kurgan, Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials, Materials & Design 55 (2014) 235-241.
[24] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27(13) (2006) 2651-2670.
[25] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Materials Science and Engineering: C 68 (2016) 948-963.
[26] Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater. 10(11) (2014) 4561-4573.
[27] M.F. Ashby, H. Shercliff, D. Cebon, Materials: engineering, science, processing and design, Butterworth-Heinemann2018.
[28] P. Liu, H. Jiang, Z. Cai, Q. Kang, Y. Zhang, The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg–Zn alloys, Journal of Magnesium and Alloys 4(3) (2016) 188-196.
[29] H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, Journal of Alloys and Compounds 663 (2016) 321-331.
[30] S.E. Prameela, P. Yi, Y. Hollenweger, B. Liu, J. Chen, L. Kecskes, D.M. Kochmann, M.L. Falk, T.P. Weihs, Strengthening magnesium by design: Integrating alloying and dynamic processing, Mech. Mater. 167 (2022) 104203.
[31] P. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metallurgical reviews 12(1) (1967) 169-194.
[32] H. Fan, J.A. El-Awady, Molecular dynamics simulations of orientation effects during tension, compression, and bending deformations of magnesium nanocrystals, Journal of Applied Mechanics 82(10) (2015) 101006.
[33] R.v. Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913 (1913) 582-592.
[34] B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Large plasticity in magnesium mediated by pyramidal dislocations, Science 365(6448) (2019) 73-75.
[35] Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W. Curtin, Mechanistic origin and prediction of enhanced ductility in magnesium alloys, Science 359(6374) (2018) 447-452.
[36] V. Herrera-Solaz, P. Hidalgo-Manrique, M.T. Pérez-Prado, D. Letzig, J. Llorca, J. Segurado, Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys, Materials Letters 128 (2014) 199-203.
[37] M. Esmaily, J. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L. Johansson, Fundamentals and advances in magnesium alloy corrosion, Progress in Materials Science 89 (2017) 92-193.
[38] E. McCafferty, Introduction to corrosion science, Springer Science & Business Media2010.
[39] K. Gusieva, C. Davies, J. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying, International Materials Reviews 60(3) (2015) 169-194.
[40] B. Li, Z. Zhang, T. Liu, Z. Qiu, Y. Su, J. Zhang, C. Lin, L. Wang, Recent progress in functionalized coatings for corrosion protection of magnesium alloys—a review, Materials 15(11) (2022) 3912.
[41] V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Research and development in magnesium alloys for industrial and biomedical applications: a review, Metals and Materials International 26 (2020) 409-430.
[42] D. Mehta, S. Masood, W. Song, Investigation of wear properties of magnesium and aluminum alloys for automotive applications, J. Mater. Process. Technol. 155 (2004) 1526-1531.
[43] H. Somekawa, S. Maeda, T. Hirayama, T. Matsuoka, T. Inoue, T. Mukai, Microstructural evolution during dry wear test in magnesium and Mg–Y alloy, Materials Science and Engineering: A 561 (2013) 371-377.
[44] A. Zafari, H. Ghasemi, R. Mahmudi, An investigation on the tribological behavior of AZ91 and AZ91+ 3 wt% RE magnesium alloys at elevated temperatures, Materials & Design (1980-2015) 54 (2014) 544-552.
[45] H.Q. Ang, Mechanical properties and deformation behaviour of highpressure die-cast magnesium-aluminium based alloys, RMIT University Melbourne, Australia, 2017.
[46] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30(4) (2009) 484-498.
[47] Y. Jingyuan, W. Jianzhong, L. Qiang, S. Jian, C. Jianming, S. Xudong, Effect of Zn on microstructures and properties of Mg-Zn alloys prepared by powder metallurgy method, Rare Metal Materials and Engineering 45(11) (2016) 2757-2762.
[48] S. Cai, T. Lei, N. Li, F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys, Materials Science and Engineering: C 32(8) (2012) 2570-2577.
[49] D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Grain refinement of magnesium alloys, MMTA 36 (2005) 1669-1679.
[50] M. Qian, A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater. 54(5) (2006) 881-886.
[51] M. Qian, D. StJohn, M. Frost, A New Zirconium‐Rich Master Alloy for the Grain Refinement of Magnesium Alloys, Magnesium: Proceedings of the 6th International conference magnesium alloys and their applications, Wiley Online Library, 2003, pp. 706-712.
[52] M. Sun, D. Yang, Y. Zhang, L. Mao, X. Li, S. Pang, Recent advances in the grain refinement effects of Zr on Mg alloys: a review, Metals 12(8) (2022) 1388.
[53] M. Sun, G. Wu, W. Wang, W. Ding, Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy, Materials Science and Engineering: A 523(1-2) (2009) 145-151.
[54] J. Li, R. Chen, Y. Ma, W. Ke, Effect of Zr modification on solidification behavior and mechanical properties of Mg–Y–RE (WE54) alloy, Journal of Magnesium and Alloys 1(4) (2013) 346-351.
[55] S. Tekumalla, S. Seetharaman, A. Almajid, M. Gupta, Mechanical properties of magnesium-rare earth alloy systems: A review, Metals 5(1) (2014) 1-39.
[56] G.-D. Tong, H.-F. Liu, Y.-H. Liu, Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys, Transactions of Nonferrous Metals Society of China 20 (2010) s336-s340.
[57] T. Zhu, J. Sun, C. Cui, R. Wu, S. Betsofen, Z. Leng, J. Zhang, M. Zhang, Influence of Y and Nd on microstructure, texture and anisotropy of Mg–5Li–1Al alloy, Materials Science and Engineering: A 600 (2014) 1-7.
[58] S. Liu, G. Yang, S. Luo, W. Jie, Microstructure and mechanical properties of sand mold cast Mg–4.58 Zn–2.6 Gd–0.18 Zr magnesium alloy after different heat treatments, Journal of Alloys and Compounds 644 (2015) 846-853.
[59] M.A. Meyers, K.K. Chawla, Mechanical behavior of materials, Cambridge university press2008.
[60] N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater. 51(8) (2004) 801-806.
[61] H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: A review, Journal of Materials Science & Technology 34(2) (2018) 248-256.
[62] G.S. Rao, Y. Prasad, Grain boundary strengthening in strongly textured magnesium produced by hot rolling, Metall. Trans. A 13 (1982) 2219-2226.
[63] C. Muga, Z. Zhang, Strengthening Mechanisms of Magnesium‐Lithium Based Alloys and Composites, Advances in Materials Science and Engineering 2016(1) (2016) 1078187.
[64] H. Hoche, S. Groß, M. Oechsner, Development of new PVD coatings for magnesium alloys with improved corrosion properties, Surface and Coatings Technology 259 (2014) 102-108.
[65] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings 8(11) (2018) 402.
[66] D.M. Mattox, Handbook of physical vapor deposition (PVD) processing, William Andrew2010.
[67] K. Wasa, Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS, William Andrew2012.
[68] M.N. Chaudhari, R.B. Ahirrao, S.D. Bagul, Thin film deposition methods: a critical review, Int. J. Res. Appl. Sci. Eng. Technol 9(6) (2021) 5215-5232.
[69] P. Davidse, L. Maissel, Dielectric thin films through rf sputtering, Journal of Applied Physics 37(2) (1966) 574-579.
[70] G. Anderson, W.N. Mayer, G. Wehner, Sputtering of dielectrics by high-frequency fields, Journal of Applied Physics 33(10) (1962) 2991-2992.
[71] H. Butler, G. Kino, Plasma sheath formation by radio‐frequency fields, The physics of fluids 6(9) (1963) 1346-1355.
[72] M. Abdelrahman, Study of plasma and ion beam sputtering processes, Journal of Physical Science and Application 5(2) (2015) 128-142.
[73] K. Holmberg, A. Matthews, Coatings tribology: properties, mechanisms, techniques and applications in surface engineering, Elsevier2009.
[74] G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Magnetron sputtering–Milestones of 30 years, Vacuu 84(12) (2010) 1354-1359.
[75] R.D. Arnell, P.J. Kelly, Recent advances in magnetron sputtering, Surface and Coatings Technology 112(1-3) (1999) 170-176.
[76] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuu 56(3) (2000) 159-172.
[77] S. Swann, Magnetron sputtering, PhTec 19(2) (1988) 67.
[78] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surface and Coatings Technology 127(2-3) (2000) 203-218.
[79] W.D. Sproul, D.J. Christie, D.C. Carter, Control of reactive sputtering processes, Thin Solid Films 491(1-2) (2005) 1-17.
[80] S. Berg, T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes, Thin Solid Films 476(2) (2005) 215-230.
[81] H. Fan, X. He, J. Gao, G. Song, Y. Zheng, C. Zhu, Y. Bai, An ab initio simulation on electron beam physical vapor deposition of Gd2Zr2O7 coating by density functional theory and kinetic Monte Carlo, J. Am. Ceram. Soc. 106(11) (2023) 6413-6424.
[82] P. Asanithi, S. Chaiyakun, P. Limsuwan, Growth of silver nanoparticles by DC magnetron sputtering, Journal of Nanomaterials 2012(1) (2012) 963609.
[83] E. Bauer, H. Poppa, Recent advances in epitaxy, Thin Solid Films 12(1) (1972) 167-185.
[84] J. Venables, G. Spiller, M. Hanbucken, Nucleation and growth of thin films, Rep. Prog. Phys. 47(4) (1984) 399.
[85] G.H. Gilmer, M.H. Grabow, Models of thin film growth modes, JOM 39(6) (1987) 19-23.
[86] Y. Wang, W. Chen, B. Wang, Y. Zheng, Ultrathin ferroelectric films: growth, characterization, physics and applications, Materials 7(9) (2014) 6377-6485.
[87] M. Ohring, Materials science of thin films: depositon and structure, Academic press2002.
[88] B.A. Movchan, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Phys. Met. Metallogr. 28(4) (1969) 83-90.
[89] J.A. Thornton, High rate thick film growth, Annual review of materials science 7(1) (1977) 239-260.
[90] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology 11(4) (1974) 666-670.
[91] J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, Journal of Vacuum Science and Technology 12(4) (1975) 830-835.
[92] R.D. Bland, G. Kominiak, D. Mattox, Effect of ion bombardment during deposition on thick metal and ceramic deposits, Journal of Vacuum Science and Technology 11(4) (1974) 671-674.
[93] A. Kondo, T. Oogami, K. Sato, Y. Tanaka, Structure and properties of cathodic arc ion plated CrN coatings for copper machining cutting tools, Surface and Coatings Technology 177 (2004) 238-244.
[94] J. Vetter, R. Knaup, H. Dweletzki, E. Schneider, S. Vogler, Hard coatings for lubrication reduction in metal forming, Surface and Coatings Technology 86 (1996) 739-747.
[95] C. Nouveau, B. Tlili, H. Aknouche, Y. Benlatreche, B. Patel, Comparison of CrAlN layers obtained with one (CrAl) or two targets (Cr and Al) by magnetron sputtering, Thin Solid Films 520(7) (2012) 2932-2937.
[96] J. Deng, F. Wu, Y. Lian, Y. Xing, S. Li, Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater. 35 (2012) 10-16.
[97] L. Aihua, D. Jianxin, C. Haibing, C. Yangyang, Z. Jun, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater. 31 (2012) 82-88.
[98] H. Altun, S. Sen, The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys, Surface and Coatings Technology 197(2-3) (2005) 193-200.
[99] W. Xie, Y. Zhao, S. Chen, B. Liao, S. Zhang, Q. Hua, G. He, Corrosion resistance of AlN monolayer and Al/AlN multilayer deposited by filtered cathodic vacuum arc, Thin Solid Films 772 (2023) 139762.
[100] W. Xie, Y. Zhao, B. Liao, P. Pang, D. Wuu, S. Zhang, Al–AlN composite coatings on AZ31 magnesium alloy for surface hardening and corrosion resistance, Vacuu 188 (2021) 110146.
[101] B. Xia, S. Zhou, Y. Wang, H. Chen, J. Zhang, B. Qi, Multilayer architecture design to enhance load-bearing capacity and tribological behavior of CrAlN coatings in seawater, Ceram. Int. 47(19) (2021) 27430-27440.
[102] D.-C. Tsai, R.-H. Huang, Z.-C. Chang, E.-C. Chen, Y.-L. Huang, F.-S. Shieu, Substrate Bias-Driven Structural and Mechanical Evolution of AlCrN and AlCrSiN Coatings via Reactive Magnetron Sputtering, Materials 18(7) (2025) 1671.
[103] R. Sanjinés, O. Banakh, C. Rojas, P. Schmid, F. Lévy, Electronic properties of Cr1− xAlxN thin films deposited by reactive magnetron sputtering, Thin Solid Films 420 (2002) 312-317.
[104] M. Kawate, A. Kimura, T. Suzuki, Microhardness and lattice parameter of Cr1-xAlxN films, Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films 20(2) (2002) 569-571.
[105] Y. Makino, K. Nogi, Synthesis of pseudobinary Cr-Al-N films with B1 structure by rf-assisted magnetron sputtering method, Surface and Coatings Technology 98(1-3) (1998) 1008-1012.
[106] A. Sugishima, H. Kajioka, Y. Makino, Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method, Surface and coatings technology 97(1-3) (1997) 590-594.
[107] G.S. Kim, S.Y. Lee, Microstructure and mechanical properties of AlCrN films deposited by CFUBMS, Surface and Coatings Technology 201(7) (2006) 4361-4366.
[108] A. Reiter, V. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1− xCrxN coatings prepared by cathodic arc evaporation, Surface and Coatings Technology 200(7) (2005) 2114-2122.
[109] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction / B.D. Cullity, S.R. Stock, Third edition ed., Prentice Hall, Upper Saddle River, NJ, 2001.
[110] M.G. Hajiabadi, M. Zamanian, D. Souri, Williamson-Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe: Cu particles, Ceram. Int. 45(11) (2019) 14084-14089.
[111] G. Love, W.P. Nicholson, A. Armigliato, Modern developments and applications in microbeam analysis, Springer Science & Business Media2012.
[112] C.O.L. Almeida, L.H.L. Lima, M. dos Santos Pereira, Springback comparison between DP600 and DP800 steel grades, Materials Research Express 7(1) (2020) 016598.
[113] N. Ding, W. Du, X. Zhu, L. Dou, Y. Wang, X. Li, K. Liu, S. Li, Roles of LPSO phases on dynamic recrystallization of high strain rate multi-directional free forged Mg-Gd-Er-Zn-Zr alloy and its strengthening mechanisms, Materials Science and Engineering: A 864 (2023) 144590.
[114] Y. Song, D. Shan, R. Chen, E.-H. Han, Effect of second phases on the corrosion behaviour of wrought Mg–Zn–Y–Zr alloy, Corros. Sci. 52(5) (2010) 1830-1837.
[115] Q. Li, Q. Wang, Y. Wang, X. Zeng, W. Ding, Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy, Journal of Alloys and Compounds 427(1-2) (2007) 115-123.
[116] D. Xu, W. Tang, L. Liu, Y. Xu, E. Han, Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys, Journal of Alloys and Compounds 432(1-2) (2007) 129-134.
[117] S. Feng, W. Zhang, Y. Zhang, J. Guan, Y. Xu, Microstructure, mechanical properties and damping capacity of heat-treated Mg–Zn–Y–Nd–Zr alloy, Materials Science and Engineering: A 609 (2014) 283-292.
[118] Y. Liu, G. Yuan, C. Lu, W. Ding, Stable icosahedral phase in Mg–Zn–Gd alloy, Scripta Mater. 55(10) (2006) 919-922.
[119] K. Guan, B. Li, Q. Yang, D. Zhang, X. Zhang, J. Zhang, L. Zhao, X. Liu, J. Meng, Microstructural characterization of intermetallic phases in a solution-treated Mg–5.0 Sm–0.6 Zn–0.5 Zr (wt%) alloy, Mater. Charact. 145 (2018) 329-336.
[120] J. Wu, L. Jin, J. Dong, F. Wang, S. Dong, The texture and its optimization in magnesium alloy, Journal of Materials Science & Technology 42 (2020) 175-189.
[121] F. Najafkhani, S. Kheiri, B. Pourbahari, H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review, Archives of Civil and Mechanical Engineering 21 (2021) 1-20.
[122] C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, p. 012038.
[123] A. Hadadzadeh, F. Mokdad, M. Wells, D. Chen, A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction, Materials Science and Engineering: A 709 (2018) 285-289.
[124] D. Zhang, H. Wen, M.A. Kumar, F. Chen, L. Zhang, I.J. Beyerlein, J.M. Schoenung, S. Mahajan, E.J. Lavernia, Yield symmetry and reduced strength differential in Mg-2.5 Y alloy, Acta materialia 120 (2016) 75-85.
[125] G.R. Argade, S.K. Panigrahi, R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci. 58 (2012) 145-151.
[126] S. Gollapudi, Grain size distribution effects on the corrosion behaviour of materials, Corros. Sci. 62 (2012) 90-94.
[127] S. Yin, W. Duan, W. Liu, L. Wu, J. Yu, Z. Zhao, M. Liu, P. Wang, J. Cui, Z. Zhang, Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys, Corros. Sci. 166 (2020) 108419.
[128] W. Ci, Q. Tao, X. Chen, C. Blawert, M. Serdechnova, C. Song, S. Yuan, F. Pan, M.L. Zheludkevich, Enhancing corrosion resistance of Mg-Nd-Zr-In alloys via the development of a triple-layered In (Indium) rich corrosion product film, Corros. Sci. 250 (2025) 112905.
[129] S. Feliu Jr, Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges, Metals 10(6) (2020) 775.
[130] X. Liu, J. Xue, S. Liu, Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities, Materials & Design 160 (2018) 138-146.
[131] Y.-C. Chang, K. Lin, J.-L. Ma, H.-F. Huang, S.-H. Chang, H.-C. Lin, Improvement of corrosion and wear resistance of CoCrNiSi0. 3 medium-entropy alloy by sputtering CrN film, Materials 16(4) (2023) 1482.
[132] Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Influence of substrate bias voltage on the microstructure and residual stress of CrN films deposited by medium frequency magnetron sputtering, Materials Science and Engineering: B 176(11) (2011) 850-854.
[133] D. Pan, C. Liu, Y. Sun, H. Yang, Z. Li, Microstructure and oxidation properties of Cr/CrAl multilayer coatings prepared via magnetron sputtering, Surface and Coatings Technology 503 (2025) 132004.
[134] Z. Li, P. Munroe, Z.-t. Jiang, X. Zhao, J. Xu, Z.-f. Zhou, J.-q. Jiang, F. Fang, Z.-h. Xie, Designing superhard, self-toughening CrAlN coatings through grain boundary engineering, Acta Materialia 60(16) (2012) 5735-5744.
[135] Y.X. Wang, S. Zhang, J.-W. Lee, W.S. Lew, B. Li, Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering, Surface and Coatings Technology 206(24) (2012) 5103-5107.
[136] J.-F. Tang, C.-Y. Lin, F.-C. Yang, C.-L. Chang, Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films, Coatings 10(6) (2020) 546.
[137] S. Wang, E. Tian, C. Lung, Surface energy of arbitrary crystal plane of bcc and fcc metals, Journal of Physics and Chemistry of Solids 61(8) (2000) 1295-1300.
[138] G. Greczynski, L. Hultman, C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material's bonding assignment by photoelectron spectroscopy, Chemphyschem 18(12) (2017) 1507-1512.
[139] J. Chastain, R.C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation 40(221) (1992) 25.
[140] H. Cao, J. Yang, Y. Li, L. Ren, F. Qi, N. Zhao, Y. Zhou, B. Li, X. Ouyang, Effect of nitrogen pressure on the microstructure, mechanical and electrochemical properties of CrAlN coatings deposited by filter cathode vacuum arc, Ceram. Int. 48(24) (2022) 36570-36584.
[141] L. Wang, G. Zhang, R. Wood, S. Wang, Q. Xue, Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application, Surface and Coatings Technology 204(21-22) (2010) 3517-3524.
[142] H.C. Barshilia, N. Selvakumar, B. Deepthi, K. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surface and Coatings Technology 201(6) (2006) 2193-2201.
[143] H.C. Barshilia, B. Deepthi, N. Selvakumar, A. Jain, K. Rajam, Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering, Applied Surface Science 253(11) (2007) 5076-5083.
[144] T.-G. Wang, D. Jeong, Y. Liu, Q. Wang, S. Iyengar, S. Melin, K.H. Kim, Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties, Surface and Coatings Technology 206(10) (2012) 2638-2644.
[145] J.C. Ding, Q.M. Wang, Z.R. Liu, S. Jeong, T.F. Zhang, K.H. Kim, Influence of bias voltage on the microstructure, mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique, Journal of Alloys and Compounds 772 (2019) 112-121.
[146] Q. Wang, F. Zhou, J. Yan, Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests, Surface and Coatings Technology 285 (2016) 203-213.
[147] J. Musil, Hard and superhard nanocomposite coatings, Surface and coatings technology 125(1-3) (2000) 322-330.
[148] K. Aouadi, B. Tlili, C. Nouveau, A. Besnard, M. Chafra, R. Souli, Influence of substrate bias voltage on corrosion and wear behavior of physical vapor deposition CrN coatings, J. Mater. Eng. Perform. 28 (2019) 2881-2891.
[149] F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, A. Billard, Influence of bias voltage on properties of AlCrN coatings prepared by cathodic arc deposition, Surface and Coatings Technology 224 (2013) 77-81.
[150] M. Herrmann, K. Sempf, M. Schneider, U. Sydow, K. Kremmer, A. Michaelis, Electrochemical corrosion of silicon carbide ceramics in H2SO4, J. Eur. Ceram. Soc. 34(2) (2014) 229-235.
[151] M. Cedeño-Vente, J. Manríquez, G. Mondragón-Rodríguez, N. Camacho, A. Gómez-Ovalle, J. Gonzalez-Carmona, J. Alvarado-Orozco, D. Espinosa-Arbelaez, Application of a transmission line model to evaluate the influence of structural defects on the corrosion behavior of arc-PVD CrN coatings, Ceram. Int. 47(15) (2021) 20885-20899.
[152] C. Gaona-Tiburcio, M. Montoya-Rangel, J.A. Cabral-Miramontes, F. Estupiñan-López, P. Zambrano-Robledo, R. Orozco Cruz, J.G. Chacón-Nava, M.Á. Baltazar-Zamora, F. Almeraya-Calderón, Corrosion resistance of multilayer coatings deposited by PVD on inconel 718 using electrochemical impedance spectroscopy technique, Coatings 10(6) (2020) 521.
[153] W. Dai, G. Wu, A. Wang, Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy, Diamond and Related Materials 19(10) (2010) 1307-1315.
[154] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28(8) (1936) 988-994.
[155] M. Soleimani, A. Fattah-alhosseini, H. Elmkhah, K. Babaei, O. Imantalab, A comparison of tribological and corrosion behavior of PVD-deposited CrN/CrAlN and CrCN/CrAlCN nanostructured coatings, Ceram. Int. 49(3) (2023) 5029-5041.
[156] Y. Vengesa, A. Fattah-alhosseini, H. Elmkhah, O. Imantalab, M.K. Keshavarz, Investigation of corrosion and tribological characteristics of annealed CrN/CrAlN coatings deposited by CAE-PVD, Ceram. Int. 49(2) (2023) 3016-3029.
[157] C. Huang, J. Duh, Deposition of AlN films onto Fe-Al-Mn alloys by reactive rf magnetron sputtering, Surface and Coatings Technology 56(1) (1992) 51-59.
[158] H. Cheng, Y. Sun, J. Zhang, Y. Zhang, S. Yuan, P. Hing, AlN films deposited under various nitrogen concentrations by RF reactive sputtering, Journal of crystal growth 254(1-2) (2003) 46-54.
[159] Z. Vashaei, T. Aikawa, M. Ohtsuka, H. Kobatake, H. Fukuyama, S. Ikeda, K. Takada, Influence of sputtering parameters on the crystallinity and crystal orientation of AlN layers deposited by RF sputtering using the AlN target, Journal of Crystal Growth 311(3) (2009) 459-462.
[160] V. Brien, P. Miska, B. Bolle, P. Pigeat, Columnar growth of ALN by rf magnetron sputtering: Role of the {1 0 1 3} planes, Journal of crystal growth 307(1) (2007) 245-252.
[161] M. Moreira, I. Doi, J. Souza, J. Diniz, Electrical characterization and morphological properties of AlN films prepared by dc reactive magnetron sputtering, Microelectronic Engineering 88(5) (2011) 802-806.
[162] R. Choudhary, P. Mishra, A. Biswas, A. Bidaye, Structural and optical properties of aluminum nitride thin films deposited by pulsed DC magnetron sputtering, International Scholarly Research Notices 2013(1) (2013) 759462.
[163] Y.-S. Yang, T.-P. Cho, Effect of annealing temperature on the water contact angle of PVD hard coatings, Materials 6(8) (2013) 3373-3386.
[164] N. Vitalios, Surface properties of doped and undoped AlN thin films: Drop measurements and Surface free energy, Aristotle University of Thessaloniki (2016).
[165] X. Jiao, Y. Shi, H. Zhong, R. Zhang, J. Yang, AlN thin films deposited on different Si-based substrates through RF magnetron sputtering, Journal of Materials Science: Materials in Electronics 26 (2015) 801-808.
[166] J. Romero, M. Gómez, J. Esteve, F. Montalà, L. Carreras, M. Grifol, A. Lousa, CrAlN coatings deposited by cathodic arc evaporation at different substrate bias, Thin Solid Films 515(1) (2006) 113-117.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98192-
dc.description.abstract鎂合金因其優異的綜合性能,在各種應用領域中逐漸受到重視,目前廣泛應用於電子穿戴裝置、車用輪圈、輕量化無人載具與國防應用等領域。本實驗所使用的材料為ZE53鎂合金,主要合金元素包括鋅、鋯與稀土元素,能有效提升其機械強度與耐腐蝕性,同時賦予良好的鑄造及加工性能。然而,鎂合金本質上耐磨耗性不足,即使透過合金設計與熱機處理對於耐磨耗性的提升仍然有限。因此本實驗進一步採用磁控濺鍍法於表面沉積具有耐磨耗性質薄膜,期望能有效補足鎂合金原有磨耗性能的不足,同時也兼顧其耐腐蝕性能,以因應更加嚴苛的使用環境,拓展其在工程上的應用。
本實驗主要分為四個部分。首先,針對不同熱軋延程度之ZE53熱軋材(10 mm與2mm)進行顯微結構、機械、磨耗以及腐蝕性質分析,探討再施加一道較高程度之熱塑性變形製程於10 mm熱軋材對於各項性質之影響。由結果來看,再施加一道較高程度的熱塑性變形製程可促進析出物細化與動態再結晶,改善結構均勻性並提升整體性能,但對磨耗性質的改善仍有限。
第二部分透過DC磁控濺鍍在2 mm熱軋材上沉積CrAl/CrAlN薄膜,並改變基板偏壓(-50V、-75V、-100V),探討其對機械與磨耗性能之影響。結果顯示,-100V條件下薄膜結構更緻密、柱狀晶尺寸更小,具有最佳的機械、磨耗性質以及耐腐蝕性質。然而,因鎂與鉻之間有明顯電位差,導致伽凡尼腐蝕加劇,使得CrAl/CrAlN薄膜沉積在鎂合金基材上之腐蝕性能反而劣於基材。
為解決此問題,第三部分採用DC磁控濺鍍在2 mm熱軋材表面沉積Al/AlN中介層,以阻隔CrAlN與基材直接接觸,降低伽凡尼腐蝕的發生。藉由調整Ar/N2流量比(5/15、10/10、15/5)與功率(100、150、200W)優化鍍膜參數。結果指出,當流量比為10/10、功率150W時,可形成最緻密結構,展現最佳電化學表現。
最後,第四部分於最佳參數之Al/AlN中介層上再濺鍍CrAlN薄膜,並探討不同偏壓對其性質之影響。觀察結果,Al/AlN中介層具良好阻隔效果,能有效抑制腐蝕反應,且與僅有Al/AlN層或無鍍膜基材相比,整體電化學性能大幅提升。機械與磨耗性質則維持與第二部分相近,同樣也是在-100V條件下的CrAlN薄膜有最佳機械與磨耗性質的表現,顯示改變中介層後CrAlN仍具有良好的耐磨耗性質。
綜合以上分析,藉由DC磁控濺鍍沉積Al/AlN/CrAlN多層薄膜於ZE53鎂合金表面,能兼顧其耐磨耗與耐腐蝕性能。在磨耗方面,即使增加磨耗荷重至4N,也不會使薄膜產生剝落;在腐蝕方面,Al/AlN中介層阻隔CrAlN與鎂合金基材的直接接觸,降低伽凡尼腐蝕的發生,進一步提升整體耐腐蝕性質。
zh_TW
dc.description.abstractMagnesium alloys have drawn increasing interest for industrial applications including wearable electronics, automotive wheels, lightweight unmanned systems, and defense technologies. In this study, ZE53 magnesium alloy, primarily alloyed with zinc, zirconium, and rare-earth elements, was selected for its superior mechanical strength, corrosion resistance, and castability. Nevertheless, magnesium alloys inherently suffer from poor wear resistance, and enhancements via alloy design or heat treatment remain limited. To address this, magnetron sputtering techniques were employed to deposit wear-resistant coatings onto the alloy surface, aiming to simultaneously improve wear and corrosion resistance and thereby extend the alloy’s applicability in service environments.
This study comprised four main parts. Firstly, ZE53 magnesium alloy sheets with different hot-rolling reductions (10 mm and 2 mm in thickness) were analyzed in terms of microstructure, mechanical properties, wear resistance, and corrosion behavior. The results showed that applying an additional severe hot-rolling process to the 10 mm sheets promoted precipitate refinement and dynamic recrystallization, which enhanced microstructural uniformity and mechanical performance. However, the improvement in wear resistance remained limited.
Secondly, DC magnetron sputtering was employed to deposit a CrAl/CrAlN bilayer coating on 2 mm hot-rolled ZE53 alloy samples under varying substrate biases (-50V, -75V, and -100V), aiming to investigate the effect of bias voltage on mechanical and wear properties. The coating deposited at -100 V exhibited a denser microstructure, finer grain size, and superior mechanical performance. However, a significant electrochemical potential difference between magnesium and chromium induced severe galvanic corrosion, leading to poorer corrosion resistance compared to the uncoated substrate.
To mitigate the issue of galvanic corrosion, the third part of this study employed DC magnetron sputtering to deposit an Al/AlN intermediate layer on the 2 mm hot-rolled alloy surface, aiming to prevent direct contact between the CrAlN layer and the magnesium substrate. Sputtering parameters, including Ar/N2 gas flow ratios (5/15, 10/10, and 15/5) and power (100W, 150W, and 200W), were optimized. The optimal conditions were identified as an Ar/N2 ratio of 10/10 and power of 150W, which resulted in the densest coating structure and superior electrochemical performance.
In the final part, CrAlN coatings were subsequently deposited on the optimized Al/AlN intermediate layers, and the effect of varying substrate biases was further examined. Results indicated that the Al/AlN intermediate layers provided effective barrier protection, reducing galvanic corrosion. Compared to bare ZE53 alloy and samples coated only with Al/AlN, the Al/AlN/CrAlN coatings exhibited enhanced corrosion resistance. The mechanical and wear properties of these coatings were comparable to those observed in the second part, confirming that changing the intermediate layer did not compromise the wear resistance of the CrAlN coatings.
In summary, the DC magnetron sputtering methods to fabricate Al/AlN/CrAlN coatings on ZE53 magnesium alloys successfully improved both wear and corrosion resistance. Even under increased wear loading conditions up to 4 N, no significant coating delamination occurred. Furthermore, the Al/AlN intermediate layers effectively prevented galvanic corrosion by separating the CrAlN coatings from direct contact with the magnesium alloy substrate, thus significantly enhancing overall corrosion resistance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:16:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:16:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目次 VI
圖次 X
表次 XVII
第一章 前言 1
第二章 文獻回顧 3
2.1 鎂與鎂合金介紹 3
2.1.1 鎂與鎂合金簡介 3
2.1.2 鎂合金特性 4
2.1.2.1 鎂合金的優點 4
2.1.2.2 鎂合金的缺點 6
2.1.3 鎂合金分類與命名 11
2.2 ZE系列鎂合金 12
2.2.1 溶質效應 12
2.2.2 強化機制 18
2.3 物理氣相沉積法(Physical vapor deposition, PVD) 21
2.3.1 濺鍍法(Sputtering) 22
2.3.1.1 直流濺鍍法(DC sputtering) 22
2.3.1.2 射頻濺鍍法(RF sputtering) 23
2.3.1.3 磁控濺鍍法(Magnetron sputtering) 24
2.3.1.4 反應濺鍍法(Reactive Sputtering) 26
2.4 薄膜沉積原理與成長機制 27
2.4.1 薄膜沉積原理與機制 27
2.4.2 薄膜結構模型 30
2.4.3 氮化物薄膜(Nitride Film) 32
2.4.3.1 氮化鉻薄膜(CrN, Chromium Nitride Film) 32
2.4.3.2 氮化鋁薄膜(Al N, Aluminum Nitride Film) 33
2.4.3.3 氮化鉻鋁薄膜(CrAlN, Chromium-Aluminum Nitride Film) 33
第三章 實驗方法與步驟 35
3.1 材料介紹與實驗流程 35
3.1.1 ZE53鎂合金熱機處理 38
3.1.2 直流磁控濺鍍法製備氮化薄膜 39
3.2 成分、顯微結構與相分析 40
3.2.1 感應耦合電漿質譜分析儀(Inductively Coupled Plasma-mass Spectrometer, ICP-MS) 40
3.2.2 X光繞射分析儀(X-Ray Diffraction, XRD) 40
3.2.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 41
3.2.4 場發射電子微探儀(Field Emission Electron Probe Microanalyzer, FE-EPMA) 42
3.2.5 背向散射電子繞射儀(Electron Backscattered Diffraction, EBSD) 43
3.2.6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 43
3.2.7 原子力顯微鏡(Atomic Force Microscopy, AFM) 44
3.2.8 穿透式電子顯微鏡(Transmitting Electron Microscope, TEM) 44
3.3 機械性質分析 45
3.3.1 維氏硬度試驗(Vickers Hardness Test) 45
3.3.2 拉伸試驗(Tensile Test) 45
3.3.3 磨耗試驗(Wear Test) 46
3.3.4 奈米壓痕試驗(Nanoindentation Test) 47
3.4 腐蝕性質分析 48
3.4.1 極化腐蝕試驗 48
3.4.2 水接觸角量測 48
第四章 實驗結果與討論 49
4.1 成分鑑定與計算相圖分析 49
4.2 不同熱軋延程度對ZE53顯微結構與性質之影響 51
4.2.1 顯微結構分析 51
4.2.1.1 XRD分析 51
4.2.1.2 SEM與WDS分析 52
4.2.1.3 TEM分析 55
4.2.1.4 EBSD分析 57
4.2.2 機械性質分析 64
4.2.3 磨耗性質分析 67
4.2.4 腐蝕性質分析 70
4.3 改變基板偏壓對DC磁控濺鍍CrAlN薄膜之影響 74
4.3.1 CrAlN沉積於不同基板偏壓之顯微結構分析 74
4.3.2 CrAlN沉積於不同基板偏壓之化學鍵結分析 83
4.3.3 CrAlN沉積於不同基板偏壓之奈米壓痕試驗 86
4.3.4 CrAlN沉積於不同基板偏壓之磨耗試驗 87
4.3.4.1 磨耗性質分析 87
4.3.4.2 磨耗軌跡分析 89
4.3.5 CrAlN沉積於不同基板偏壓之極化腐蝕試驗 92
4.3.6 CrAlN沉積於不同基板偏壓下之缺陷密度量測 96
4.3.7 CrAlN沉積於不同基板偏壓之水接觸角分析 97
4.4 改變Ar/N2比與功率對DC磁控濺鍍AlN薄膜之影響 98
4.4.1 改變Ar/N2比對DC磁控濺鍍AlN薄膜之影響 99
4.4.1.1 AlN薄膜沉積於不同Ar/N2比之顯微結構分析 99
4.4.1.2 AlN薄膜沉積於不同Ar/N2比之極化腐蝕試驗 104
4.4.1.3 AlN薄膜沉積於不同Ar/N2比之水接觸角分析 107
4.4.2 改變功率對DC磁控濺鍍AlN薄膜之影響 108
4.4.2.1 AlN薄膜沉積於不同功率之顯微結構分析 108
4.4.2.2 AlN薄膜沉積於不同功率之極化腐蝕試驗 113
4.4.2.3 AlN薄膜沉積於不同功率之水接觸角分析 116
4.5 沉積不同基板偏壓CrAlN薄膜於Al/AlN薄膜上之影響 117
4.5.1 不同基板偏壓CrAlN薄膜沉積於Al/AlN薄膜之顯微結構分析 117
4.5.2 不同基板偏壓下CrAlN沉積於Al/AlN薄膜之奈米壓痕試驗 125
4.5.3 不同基板偏壓下CrAlN沉積於Al/AlN薄膜之磨耗試驗 126
4.5.3.1 磨耗性質分析 126
4.5.3.2 磨耗軌跡分析 128
4.5.4 不同基板偏壓下CrAlN沉積於Al/AlN薄膜之極化腐蝕試驗 131
4.5.5 不同基板偏壓下CrAlN沉積於Al/AlN薄膜之水接觸角分析 135
第五章 結論 136
第六章 參考文獻 140
-
dc.language.isozh_TW-
dc.subjectZE系列鎂合金zh_TW
dc.subject熱塑性加工zh_TW
dc.subjectDC磁控濺鍍zh_TW
dc.subjectCrAlN薄膜zh_TW
dc.subjectAlN薄膜zh_TW
dc.subject磨耗試驗zh_TW
dc.subject極化腐蝕試驗zh_TW
dc.subjecthot-rolling processingen
dc.subjectPolarization corrosion testingen
dc.subjectWear testingen
dc.subjectAlN coatingsen
dc.subjectCrAlN coatingsen
dc.subjectDC magnetron sputteringen
dc.subjectZE series magnesium alloyen
dc.title磁控濺鍍CrAlN與AlN/CrAlN薄膜提升ZE53鎂合金抗磨耗及耐腐蝕性質之研究zh_TW
dc.titleStudies on Improving the Wear and Corrosion Resistance of ZE53 Magnesium Alloy by Magnetron Sputtered CrAlN and AlN/CrAlN coatingsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee薛人愷;許正勳;王鼎翔zh_TW
dc.contributor.oralexamcommitteeRen-Kae Shiue;Cheng-Hsun Hsu;Ding-Shiang Wangen
dc.subject.keywordZE系列鎂合金,熱塑性加工,DC磁控濺鍍,CrAlN薄膜,AlN薄膜,磨耗試驗,極化腐蝕試驗,zh_TW
dc.subject.keywordZE series magnesium alloy,hot-rolling processing,DC magnetron sputtering,CrAlN coatings,AlN coatings,Wear testing,Polarization corrosion testing,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202502324-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2030-07-23-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
14.63 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved