請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98185完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 貝蘇章 | zh_TW |
| dc.contributor.advisor | Soo-Chang Pei | en |
| dc.contributor.author | 潘品齊 | zh_TW |
| dc.contributor.author | Pin-Chi Pan | en |
| dc.date.accessioned | 2025-07-30T16:15:15Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | [1] D. Akkaynak and T. Treibitz. A revised underwater image formation model. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6723–6732, 2018.
[2] D. Akkaynak and T. Treibitz. Sea-thru: A method for removing water from underwater images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1682–1691, 2019. [3] D. Akkaynak, T. Treibitz, T. Shlesinger, Y. Loya, R. Tamir, and D. Iluz. What is the space of attenuation coefficients in underwater computer vision? In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4931–4940, 2017. [4] O. Almutiry, K. Iqbal, S. Hussain, A. Mahmood, and H. Dhahri. Underwater images contrast enhancement and its challenges: a survey. Multimedia Tools and Applications, pages 1–26, 2024. [5] S. An, L. Xu, I. Senior Member, Z. Deng, and H. Zhang. Hfm: A hybrid fusion method for underwater image enhancement. Engineering Applications of Artificial Intelligence, 127:107219, 2024. [6] C. Ancuti, C. O. Ancuti, T. Haber, and P. Bekaert. Enhancing underwater images and videos by fusion. In 2012 IEEE conference on computer vision and pattern recognition, pages 81–88. IEEE, 2012. [7] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert. Color balance and fusion for underwater image enhancement. IEEE Transactions on image processing, 27(1):379–393, 2017. [8] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12(3):313–326, 1982. [9] H. Bahng, A. Jahanian, S. Sankaranarayanan, and P. Isola. Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022. [10] O. Beijbom, P. J. Edmunds, C. Roelfsema, J. Smith, D. I. Kline, B. P. Neal, M. J. Dunlap, V. Moriarty, T.-Y. Fan, C.-J. Tan, et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PloS one, 10(7):e0130312, 2015. [11] Y. Bekerman, S. Avidan, and T. Treibitz. Unveiling optical properties in underwater images. In 2020 IEEE International Conference on Computational Photography (ICCP), pages 1–12. IEEE, 2020. [12] D. Berman, D. Levy, S. Avidan, and T. Treibitz. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE transactions on pattern analysis and machine intelligence, 43(8):2822–2837, 2020. [13] D. Berman, T. Treibitz, and S. Avidan. Diving into haze-lines: Color restoration of underwater images. In Proc. British Machine Vision Conference (BMVC), volume 1, page 2, 2017. [14] S. F. Bhat, I. Alhashim, and P. Wonka. Adabins: Depth estimation using adaptive bins. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4009–4018, 2021. [15] B. J. Boom, J. He, S. Palazzo, P. X. Huang, C. Beyan, H.-M. Chou, F.-P. Lin, C. Spampinato, and R. B. Fisher. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecological Informatics, 23:83–97, 2014. [16] H. Cai, C. Gan, L. Zhu, and S. Han. Tinytl: Reduce memory, not parameters for efficient on-device learning. Advances in Neural Information Processing Systems, 33:11285–11297, 2020. [17] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6154–6162, 2018. [18] H. Chen, R. Tao, H. Zhang, Y. Wang, X. Li, W. Ye, J. Wang, G. Hu, and M. Savvides. Conv-adapter: Exploring parameter efficient transfer learning for convnets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1551–1561, 2024. [19] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, et al. Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155, 2019. [20] L. Chen, Z. Jiang, L. Tong, Z. Liu, A. Zhao, Q. Zhang, J. Dong, and H. Zhou. Perceptual underwater image enhancement with deep learning and physical priors. IEEE Transactions on Circuits and Systems for Video Technology, 31(8):3078–3092, 2020. [21] S. Chen, C. Ge, Z. Tong, J. Wang, Y. Song, J. Wang, and P. Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural Information Processing Systems, 35:16664–16678, 2022. [22] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1290–1299, 2022. [23] J. Cheng, W. Yin, K. Wang, X. Chen, S. Wang, and X. Yang. Adaptive fusion of single-view and multi-view depth for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10138–10147, 2024. [24] J. Y. Chiang and Y.-C. Chen. Underwater image enhancement by wavelength compensation and dehazing. IEEE transactions on image processing, 21(4):1756–1769, 2011. [25] J. Choe, S. Im, F. Rameau, M. Kang, and I. S. Kweon. Volumefusion: Deep depth fusion for 3d scene reconstruction. In Proceedings of the IEEE/CVF international conference on computer vision, pages 16086–16095, 2021. [26] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh International Conference on Learning Representations, 2023. [27] R. Cong, W. Yang, W. Zhang, C. Li, C.-L. Guo, Q. Huang, and S. Kwong. Pugan: Physical model-guided underwater image enhancement using gan with dual-discriminators. IEEE Transactions on Image Processing, 32:4472–4485, 2023. [28] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance segmentation for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 7–9, 2017. [29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. [30] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34:8780–8794, 2021. [31] S. T. Digumarti, G. Chaurasia, A. Taneja, R. Siegwart, A. Thomas, and P. Beardsley. Underwater 3d capture using a low-cost commercial depth camera. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–9. IEEE, 2016. [32] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. [33] P. Drap. Underwater photogrammetry for archaeology. Special applications of photogrammetry, 114, 2012. [34] P. Drews, E. Nascimento, F. Moraes, S. Botelho, and M. Campos. Transmission estimation in underwater single images. In Proceedings of the IEEE international conference on computer vision workshops, pages 825–830, 2013. [35] P. L. Drews, E. R. Nascimento, S. S. Botelho, and M. F. M. Campos. Underwater depth estimation and image restoration based on single images. IEEE computer graphics and applications, 36(2):24–35, 2016. [36] D. Du, E. Li, L. Si, W. Zhai, F. Xu, J. Niu, and F. Sun. Uiedp: Boosting underwater image enhancement with diffusion prior. Expert Systems with Applications, 259:125271, 2025. [37] L. Ebner, G. Billings, and S. Williams. Metrically scaled monocular depth estimation through sparse priors for underwater robots. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 3751–3757. IEEE, 2024. [38] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. Advances in neural information processing systems, 27, 2014. [39] S. Emberton, L. Chittka, and A. Cavallaro. Underwater image and video dehazing with pure haze region segmentation. Computer Vision and Image Understanding, 168:145–156, 2018. [40] S. K. Fondevik, A. Stahl, A. A. Transeth, and O. Ø. Knudsen. Image segmentation of corrosion damages in industrial inspections. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pages 787–792. IEEE, 2020. [41] X. Fu, P. Zhuang, Y. Huang, Y. Liao, X.-P. Zhang, and X. Ding. A retinex-based enhancing approach for single underwater image. In 2014 IEEE international conference on image processing (ICIP), pages 4572–4576. Ieee, 2014. [42] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila. Automatic red-channel underwater image restoration. Journal of Visual Communication and Image Representation, 26:132–145, 2015. [43] N. E. Garcia-D’Urso, A. Galan-Cuenca, P. Climent-Pérez, M. Saval-Calvo, J. Azorin-Lopez, and A. Fuster-Guillo. Efficient instance segmentation using deep learning for species identification in fish markets. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022. [44] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. The international journal of robotics research, 32(11):1231–1237, 2013. [45] A. S. A. Ghani and N. A. M. Isa. Enhancement of low quality underwater image through integrated global and local contrast correction. Applied Soft Computing, 37:332–344, 2015. [46] A. Giannou, S. Rajput, and D. Papailiopoulos. The expressive power of tuning only the norm layers. arXiv preprint arXiv:2302.07937, 8, 2023. [47] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF international conference on computer vision, pages 3828–3838, 2019. [48] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1780–1789, 2020. [49] H. Gupta and K. Mitra. Unsupervised single image underwater depth estimation. In 2019 IEEE International Conference on Image Processing (ICIP), pages 624–628. IEEE, 2019. [50] Y. Gutnik, A. Avni, T. Treibitz, and M. Groper. On the adaptation of an auv into a dedicated platform for close range imaging survey missions. Journal of Marine Science and Engineering, 10(7):974, 2022. [51] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017. [52] K. He, J. Sun, and X. Tang. Single image haze removal using dark channel prior. IEEE transactions on pattern analysis and machine intelligence, 33(12):2341–2353, 2010. [53] Y. He, N. Murata, C.-H. Lai, Y. Takida, T. Uesaka, D. Kim, W.-H. Liao, Y. Mitsufuji, J. Z. Kolter, R. Salakhutdinov, and S. Ermon. Manifold preserving guided diffusion. In The Twelfth International Conference on Learning Representations, 2024. [54] M. S. Hitam, E. A. Awalludin, W. N. J. H. W. Yussof, and Z. Bachok. Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In 2013 International conference on computer applications technology (ICCAT), pages 1–5. IEEE, 2013. [55] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020. [56] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International conference on machine learning, pages 2790–2799. PMLR, 2019. [57] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021. [58] J. Hu, L. Huang, T. Ren, S. Zhang, R. Ji, and L. Cao. You only segment once: Towards real-time panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17819–17829, 2023. [59] S. Huang, K. Wang, H. Liu, J. Chen, and Y. Li. Contrastive semi-supervised learning for underwater image restoration via reliable bank. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 18145–18155, 2023. [60] K. Iqbal, M. Odetayo, A. James, R. A. Salam, and A. Z. H. Talib. Enhancing the low quality images using unsupervised colour correction method. In 2010 IEEE International conference on systems, man and cybernetics, pages 1703–1709. IEEE, 2010. [61] M. J. Islam, Y. Xia, and J. Sattar. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 5(2):3227–3234, 2020. [62] J. S. Jaffe. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering, 15(2):101–111, 1990. [63] M. Jha and A. K. Bhandari. Cbla: Color balanced locally adjustable underwater image enhancement. IEEE Transactions on Instrumentation and Measurement, 2024. [64] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim. Visual prompt tuning. In European Conference on Computer Vision, pages 709–727. Springer, 2022. [65] Q. Jiang, Y. Gu, C. Li, R. Cong, and F. Shao. Underwater image enhancement quality evaluation: Benchmark dataset and objective metric. IEEE Transactions on Circuits and Systems for Video Technology, 32(9):5959–5974, 2022. [66] M. Kalia, N. Navab, and T. Salcudean. A real-time interactive augmented reality depth estimation technique for surgical robotics. In 2019 international conference on robotics and automation (icra), pages 8291–8297. IEEE, 2019. [67] M. Khan, A. Negi, A. Kulkarni, S. S. Phutke, S. K. Vipparthi, and S. Murala. Phaseformer: Phase-based attention mechanism for underwater image restoration and beyond. arXiv preprint arXiv:2412.01456, 2024. [68] A. Kim and R. M. Eustice. Real-time visual slam for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3):719–733, 2013. [69] A. Kirillov, Y. Wu, K. He, and R. Girshick. Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9799–9808, 2020. [70] V. Kulikov and V. Lempitsky. Instance segmentation of biological images using harmonic embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3843–3851, 2020. [71] C. Li, S. Anwar, J. Hou, R. Cong, C. Guo, and W. Ren. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Transactions on Image Processing, 30:4985–5000, 2021. [72] C. Li, S. Anwar, and F. Porikli. Underwater scene prior inspired deep underwater image and video enhancement. Pattern recognition, 98:107038, 2020. [73] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, and D. Tao. An underwater image enhancement benchmark dataset and beyond. IEEE transactions on image processing, 29:4376–4389, 2019. [74] C. Li, J. Guo, and C. Guo. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal processing letters, 25(3):323–327, 2018. [75] X. Li, G. Hou, K. Li, and Z. Pan. Enhancing underwater image via adaptive color and contrast enhancement, and denoising. Engineering Applications of Artificial Intelligence, 111:104759, 2022. [76] S. Lian, H. Li, R. Cong, S. Li, W. Zhang, and S. Kwong. Watermask: Instance segmentation for underwater imagery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1305–1315, 2023. [77] S. Lian and others. Diving into underwater: Segment anything model guided underwater salient instance segmentation and a large-scale dataset. In ICML, 2024. [78] S. Lin, Z. Li, F. Zheng, Q. Zhao, and S. Li. Underwater image enhancement based on adaptive color correction and improved retinex algorithm. IEEE Access, 11:27620–27630, 2023. [79] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017. [80] R. Liu, X. Fan, M. Zhu, M. Hou, and Z. Luo. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light. IEEE transactions on circuits and systems for video technology, 30(12):4861–4875, 2020. [81] T. Liu, S. Zhang, and Z. Yu. Redefining accuracy: Underwater depth estimation for irregular illumination scenes. Sensors (Basel, Switzerland), 24(13):4353, 2024. [82] Y. Liu, Q. Jiang, X. Wang, T. Luo, and J. Zhou. Underwater image enhancement with cascaded contrastive learning. IEEE Transactions on Multimedia, 2024. [83] Y.-C. Liu, C.-Y. Ma, J. Tian, Z. He, and Z. Kira. Polyhistor: Parameter-efficient multi-task adaptation for dense vision tasks. Advances in Neural Information Processing Systems, 35:36889–36901, 2022. [84] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021. [85] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11976–11986, 2022. [86] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. [87] H. Lu, Y. Zhang, Y. Li, Q. Zhou, R. Tadoh, T. Uemura, H. Kim, and S. Serikawa. Depth map reconstruction for underwater kinect camera using inpainting and local image mode filtering. IEEE Access, 5:7115–7122, 2017. [88] S. Lu, F. Guan, H. Zhang, and H. Lai. Underwater image enhancement method based on denoising diffusion probabilistic model. Journal of Visual Communication and Image Representation, 96:103926, 2023. [89] B. McGlamery. A computer model for underwater camera systems. In Ocean Optics VI, volume 208, pages 221–231. SPIE, 1980. [90] D. McLeod, J. Jacobson, M. Hardy, and C. Embry. Autonomous inspection using an underwater 3d lidar. In 2013 OCEANS-San Diego, pages 1–8. IEEE, 2013. [91] S. Mohan and P. Simon. Underwater image enhancement based on histogram manipulation and multiscale fusion. Procedia Computer Science, 171:941–950, 2020. [92] S. Oh, M. Lee, S. Seo, M. Roy, D. Seo, and J. Kim. Underwater multispectral imaging system for environmental monitoring. In OCEANS 2014-TAIPEI, pages 1–3. IEEE, 2014. [93] K. Panetta, C. Gao, and S. Agaian. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 41(3):541–551, 2015. [94] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. Advances in neural information processing systems, 2017. [95] D. Peng and W. Kameyama. Simple and efficient vision backbone adapter for image semantic segmentation. In Asian Conference on Machine Learning, pages 1071–1086. PMLR, 2024. [96] L. Peng, C. Zhu, and L. Bian. U-shape transformer for underwater image enhancement. IEEE Transactions on Image Processing, 32:3066–3079, 2023. [97] Y.-T. Peng and P. C. Cosman. Underwater image restoration based on image blurriness and light absorption. IEEE transactions on image processing, 26(4):1579–1594, 2017. [98] Y.-T. Peng, X. Zhao, and P. C. Cosman. Single underwater image enhancement using depth estimation based on blurriness. In 2015 IEEE International Conference on Image Processing (ICIP), pages 4952–4956. IEEE, 2015. [99] J. Raihan A, P. E. Abas, and L. C. De Silva. Depth estimation for underwater images from single view image. IET Image Processing, 14(16):4188–4197, 2020. [100] Y. Randall. Flsea: Underwater visual-inertial and stereo-vision forward-looking datasets. Master’s thesis, University of Haifa (Israel), 2023. [101] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In Proceedings of the IEEE/CVF international conference on computer vision, pages 12179–12188, 2021. [102] A. Sabnis and L. Vachhani. Single image based depth estimation for robotic applications. In 2011 IEEE Recent Advances in Intelligent Computational Systems, pages 102–106. IEEE, 2011. [103] A. Saleh, M. Sheaves, D. Jerry, and M. R. Azghadi. Adaptive deep learning framework for robust unsupervised underwater image enhancement. Expert Systems with Applications, 268:126314, 2025. [104] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018. [105] F. Shkurti, A. Xu, M. Meghjani, J. C. G. Higuera, Y. Girdhar, P. Giguere, B. B. Dey, J. Li, A. Kalmbach, C. Prahacs, et al. Multi-domain monitoring of marine environments using a heterogeneous robot team. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1747–1753. IEEE, 2012. [106] C. Si, W. Yu, P. Zhou, Y. Zhou, X. Wang, and S. Yan. Inception transformer. Advances in Neural Information Processing Systems, 35:23495–23509, 2022. [107] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE access, 9:82031–82057, 2021. [108] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pages 746–760. Springer, 2012. [109] W. Song, Y. Wang, D. Huang, and D. Tjondronegoro. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In Advances in Multimedia Information Processing–PCM 2018: 19th Pacific-Rim Conference on Multimedia, Hefei, China, September 21-22, 2018, Proceedings, Part I 19, pages 678–688. Springer, 2018. [110] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations, 2021. [111] R. Tinn, H. Cheng, Y. Gu, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon. Fine-tuning large neural language models for biomedical natural language processing. Patterns, 4(4), 2023. [112] S. Verghese. Self-driving cars and lidar. In CLEO: Applications and Technology, pages AM3A–1. Optica Publishing Group, 2017. [113] P. Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):1661–1674, 2011. [114] C. Wang, Y. Zhang, M. Cui, P. Ren, Y. Yang, X. Xie, X.-S. Hua, H. Bao, and W. Xu. Active boundary loss for semantic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 2397–2405, 2022. [115] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen. Solov2: Dynamic and fast instance segmentation. Advances in Neural information processing systems, 33:17721–17732, 2020. [116] Y. Wang, J. Guo, H. Gao, and H. Yue. Uiec^ 2-net: Cnn-based underwater image enhancement using two color space. Signal Processing: Image Communication, 96:116250, 2021. [117] Y. Wang, Y. Hu, J. Yu, and J. Zhang. Gan prior based null-space learning for consistent super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 2724–2732, 2023. [118] Y. Wang, J. Yu, and J. Zhang. Zero-shot image restoration using denoising diffusion null-space model. The Eleventh International Conference on Learning Representations, 2023. [119] Z. Wang, D. Zhou, Z. Li, Z. Yuan, and C. Yang. Underwater image enhancement via adaptive color correction and stationary wavelet detail enhancement. IEEE Access, 12:11066–11082, 2024. [120] J. Wen, J. Cui, Z. Zhao, R. Yan, Z. Gao, L. Dou, and B. M. Chen. Syreanet: A physically guided underwater image enhancement framework integrating synthetic and real images. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5177–5183. IEEE, 2023. [121] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin. Understanding and improving layer normalization. Advances in neural information processing systems, 32, 2019. [122] J. Xu, Z. Xiong, and S. P. Bhattacharyya. Pidnet: A real-time semantic segmentation network inspired by pid controllers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 19529–19539, 2023. [123] L. Yang, S. Ding, Y. Cai, J. Yu, J. Wang, and Y. Shi. Guidance with spherical gaussian constraint for conditional diffusion. In International Conference on Machine Learning, 2024. [124] M. Yang and A. Sowmya. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, 24(12):6062–6071, 2015. [125] X. Ye, Z. Li, B. Sun, Z. Wang, R. Xu, H. Li, and X. Fan. Deep joint depth estimation and color correction from monocular underwater images based on unsupervised adaptation networks. IEEE Transactions on Circuits and Systems for Video Technology, 30(11):3995–4008, 2019. [126] D. Yin, L. H. B. Li, and Y. Zhang. Adapter is all you need for tuning visual tasks. arXiv preprint arXiv:2311.15010, 2023. [127] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? Advances in neural information processing systems, 27, 2014. [128] B. Yu, J. Wu, and M. J. Islam. Udepth: Fast monocular depth estimation for visually-guided underwater robots. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 3116–3123. IEEE, 2023. [129] J.-Q. Yu. 駕 駛 場 景 中 的 影 像 辨 識: 三 維 物 件 辨 識 與 影 像 分 割. 臺灣大學電信工程學研究所學位論文, pages 1–137, 2023. [130] E. B. Zaken, S. Ravfogel, and Y. Goldberg. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021. [131] G. Zhang, X. Lu, J. Tan, J. Li, Z. Zhang, Q. Li, and X. Hu. Refinemask: Towards high-quality instance segmentation with fine-grained features. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6861–6869, 2021. [132] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3836–3847, 2023. [133] S. Zhang, X. Gong, R. Nian, B. He, Y. Wang, and A. Lendasse. A depth estimation model from a single underwater image with non-uniform illumination correction. In OCEANS 2017-Aberdeen, pages 1–5. IEEE, 2017. [134] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Transactions on Image Processing, 31:3997–4010, 2022. [135] Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation for autonomous driving with deep densely connected mrfs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 669–677, 2016. [136] 盧 怡 臻. 夜 間 暨 低 光 源 下 自 駕 即 時 影 像 分 割, 深 度 及 優 化 模 組. 臺灣大學電信工程學研究所學位論文, pages 1–109, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98185 | - |
| dc.description.abstract | 水下視覺感知會因為光線衰減、色彩扭曲與能見度低等問題而面臨眾多挑戰,使得傳統影像處理方法在實際應用中難以維持穩定且準確的辨識能力。為了提升水下場景感知的穩定性,本論文探討了水下影像增強、實例分割與深度預測。首先,我們比較無需訓練與學習型的水下影像增強方法,以改善水下影像品質並對抗視覺退化。接著,我們提出了名為 BARD-ERA 的水下實例分割架構,透過細化邊界感知的結果與設計環境調整機制,提升了在惡劣環境下的目標邊界辨識能力。隨後,我們設計了 SADDER 模組,用以結合分割先驗資訊並改善單張影像的深度預測結果。最後,我們整合實例分割與深度預測,提出一個物體層級的深度感知分割框架,透過物體區域的平均深度計算方式,實現語義與三維資訊的融合。實驗結果顯示,所提出的方法在多個水下資料集上展現優異的準確性與穩健性,具有良好的可解釋性與模組化特性,適用於海洋機器人、生態監測與海底探勘等實務應用場景。 | zh_TW |
| dc.description.abstract | Underwater visual perception presents unique challenges due to issues such as light attenuation, color distortion, and low visibility. These factors significantly hinder the reliability of conventional image-processing techniques when applied to real-world underwater tasks. In response, this thesis explores a series of key modules to enhance the robustness and interpretability of underwater scene understanding. We begin by examining underwater image enhancement, comparing learning-free and learning-based methods to address visual degradation. This is followed by the development of BARD-ERA, an instance segmentation framework that leverages boundary-aware refinement and adapter-based domain tuning to improve object delineation under challenging aquatic conditions. Next, we introduce SADDER, a lightweight depth refinement module designed to enhance monocular depth estimation using segmentation-aware residual learning. Finally, we integrate instance segmentation and depth estimation into a unified depth-informed instance segmentation framework, enabling object-level spatial reasoning by assigning average depth values to segmented regions. Experimental results across multiple underwater datasets validate the effectiveness of the proposed methods, which together contribute to more accurate, interpretable, and modular underwater perception. This research offers practical value for applications such as marine robotics, ecological monitoring, and subsea exploration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:15:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:15:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee . . . . . . . . . . i
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Underwater Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Underwater Image Enhancement . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 2 Multi-Light Underwater Image Enhancement . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Traditional Image Processing Methods . . . . . . . . . . . . . . . . 14 2.2.2 Physical Model-Based Methods . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Learning-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Score-Based Diffusion Models . . . . . . . . . . . . . . . . . . . . 16 2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Underwater Image Synthesis . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Training-free CDMs for Underwater Image Enhancement . . . . . . . . . 24 2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.2 Comparison with Traditional Methods . . . . . . . . . . . . . . . . . 34 2.5.3 Comparison with Learning-Based Methods . . . . . . . . . . . . . . . 35 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter 3 Multi-Light Underwater Instance Segmentation . . . . . . . . . . . 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1 Underwater Instance Segmentation . . . . . . . . . . . . . . . . . . 46 3.2.2 Adapter-Tuning Methods . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.1 BARDecoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 Environment-Robust Adapter Tuning . . . . . . . . . . . . . . . . . 51 3.3.3 Boundary-Aware Cross-Entropy Loss . . . . . . . . . . . . . . . . 55 3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Comparison with State-of-the-Art Methods . . . . . . . . . . . . . . . 59 3.4.3 Comparison with Fine-Tuning Methods . . . . . . . . . . . . . . . . . . 62 3.4.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 4 Multi-Light Underwater Depth Estimation . . . . . . . . . . . . . . 73 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Traditional Depth Estimation Methods . . . . . . . . . . . . . . . . 75 4.2.2 Learning-Based Depth Estimation Methods . . . . . . . . . . . . . . . . 75 4.2.3 Classification-Based Depth Estimation Methods . . . . . . . . . . . . . 77 4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.2 TRUDepth Architecture . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.3 SADDER Architecture . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.3 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.4 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter 5 Multi-Light Underwater Depth-Informed Instance Segmentation . . . . 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.1 Depth-Informed Panoptic Segmentation . . . . . . . . . . . . . . . . 95 5.2.2 Nighttime Depth-Informed Panoptic Segmentation . . . . . . . . . . . 96 5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.2 Underwater Instance Segmentation . . . . . . . . . . . . . . . . . . 98 5.3.3 Underwater Pixel-wise Depth Estimation . . . . . . . . . . . . . . . 99 5.3.4 Underwater Depth-Informed Instance Segmentation . . . . . . . . . 100 5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 | - |
| dc.language.iso | en | - |
| dc.subject | 水下影像處理 | zh_TW |
| dc.subject | 多光源亮度增強 | zh_TW |
| dc.subject | 多尺度特徵提取 | zh_TW |
| dc.subject | 環境自適應 | zh_TW |
| dc.subject | 深度預測 | zh_TW |
| dc.subject | 實例分割 | zh_TW |
| dc.subject | 海洋監測 | zh_TW |
| dc.subject | 水下導航 | zh_TW |
| dc.subject | 資源勘探 | zh_TW |
| dc.subject | Resource Exploration | en |
| dc.subject | Underwater Navigation | en |
| dc.subject | Underwater Image Processing | en |
| dc.subject | Multi-Scale Feature Extraction | en |
| dc.subject | Multi-Light-Source Brightness Enhancement | en |
| dc.subject | Environmental Adaptation | en |
| dc.subject | Depth Estimation | en |
| dc.subject | Instance Segmentation | en |
| dc.subject | Marine Monitoring | en |
| dc.title | 多光源水下場景中的影像分割與深度估計:環境調適與強健視覺方法 | zh_TW |
| dc.title | Image Segmentation and Depth Estimation in Multi-Light Underwater Scenes: Environmental Adaptation and Robust Vision Methods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 丁建均 | zh_TW |
| dc.contributor.coadvisor | Jian-Jiun Ding | en |
| dc.contributor.oralexamcommittee | 鍾國亮;杭學鳴;吳家麟 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Liang Chung;Hsueh-Ming Hang;Jia-Ling Wu | en |
| dc.subject.keyword | 水下影像處理,多光源亮度增強,多尺度特徵提取,環境自適應,深度預測,實例分割,海洋監測,水下導航,資源勘探, | zh_TW |
| dc.subject.keyword | Underwater Image Processing,Multi-Scale Feature Extraction,Multi-Light-Source Brightness Enhancement,Environmental Adaptation,Depth Estimation,Instance Segmentation,Marine Monitoring,Underwater Navigation,Resource Exploration, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202501775 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-17 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 37.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
