請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98182完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 李易臻 | zh_TW |
| dc.contributor.author | Yi-Chen Lee | en |
| dc.date.accessioned | 2025-07-30T16:14:31Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | Ackerman Grunfeld, D., Gilbert, D., Hou, J., Jones, A. M., Lee, M. J., Kibbey, T. C. G., & O’Carroll, D. M. (2024). Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters. Nature Geoscience, 17(4), 340-346. https://doi.org/10.1038/s41561-024-01394-6
Adamson, D. T., Kulkarni, P. R., Nickerson, A., Higgins, C. P., Field, J., Schultz, M. M., Barofsky, D. F., & Field, J. A. (2003). Fluorinated alkyl surfactants.Environmental Engineering Science, 20(5), 487-501. https://doi.org/10.1089/109287503322151834 Agency for Toxic Substances and Disease Registry. (2021). Toxicological profile for perfluoroalkyls. U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf Ahmed, S. F. (2025). A mini-review of full-scale drinking water treatment plants PFAS removal. Sustainability, 17(6), 2401. https://doi.org/10.3390/su17062401 Ahrens, L., & Bundschuh, M. (2014).. Fate and effects of poly‐ and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33 (9)., 1921-1929. https://doi.org/10.1002/etc.2676 Angel Group. (2024). Reverse osmosis and mineralization filter cartridge technology for household PFAS removal. Angel Water Solutions. https://www.angelwatersolutions.com/angel-ro-system/ Araújo, R. G., Rodríguez-Hernandéz, J. A., González-González, R. B., Macias-Garbett, R., Martínez-Ruiz, M., Reyes-Pardo, H., Hernández Martínez, S. A., Parra-Arroyo, L., Melchor-Martínez, E. M., Sosa-Hernández, J. E., Coronado-Apodaca, K. G., Varjani, S., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2022).. Detection and tertiary treatment technologies of poly- and perfluoroalkyl substances in wastewater treatment plants. Frontiers in Environmental Science, 10, 864894. https://doi.org/10.3389/fenvs.2022.864894 Bao, Y., Niu, J., Xu, Z., Gao, D., Shi, J., Sun, X., & Huang, Q. (2023). Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: Mechanisms and influencing factors. Chemosphere, 320, 134982.https://doi.org/10.1016/j.jcis.2014.07.041 Burns, D. J., Heffernan, J. B., Ravi, K. S., & Stanford, B. D. (2022). Commercial-scale remediation of per- and polyfluoroalkyl substances from a landfill leachate catchment using Surface-Active Foam Fractionation (SAFF®). Remediation Journal, 32(3), 139–150. https://doi.org/10.1002/rem.21720 Burns, D. J., Stevenson, P., & Murphy, P. J. (2021). PFAS removal from groundwaters using surface-active foam fractionation. Remediation Journal, 31 (4), 19-33. https://doi.org/10.1002/rem.21694 Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrative Environmental Assessment and Management, 7, 513-541. https://doi.org/10.1002/ieam.258 C8 Science Panel. (2015). Background information on settlement and science panel. http://www.c8sciencepanel.org/panel.html California State Water Resources Control Board. (2022). Per- and polyfluoroalkyl substances (PFAS).https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/pfas.html Cotruvo, J. A., Goldhaber, S. B., & Cohen, A. J. B. (2023). EPA's unprecedented interim drinking water health advisories for PFOA and PFOS. Groundwater, 61 (3), 343–350. https://doi.org/10.1111/gwat.13288 Deng, S., Yu, Q., Huang, J., & Yu, G. (2010). Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Research, 44(18), 5188–5195. https://doi.org/10.1016/j.watres.2010.06.038 Deng, S., Zhou, Q., Yu, G., Huang, J., & Fan, Q. (2011). Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Research, 45 (4), 1774-1780. https://doi.org/10.1016/j.watres.2010.11.029 DeWitt, J. C., Blossom, S. J., & Schaider, L. A. (2019). PFAS: Emerging contaminants. In J. C. DeWitt (Ed. ), Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances (2nd ed., pp. 3–24). Springer. https://doi.org/10.1007/978-3-030-10519-0_1 Ding, G., & Peijnenburg, W. J. G. M. (2013). Physicochemical properties and aquatic toxicity of perfluorinated compounds. Chemosphere, 90 (3), 987–994. https://doi.org/10.1016/j.chemosphere.2012.09.057 Dixit, F., Barbeau, B., Mostafavi, S. G., & Mohseni, M. (2019). Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins. Journal of Hazardous Materials, 384, 121-261.https://doi.org/10.1016/j.jhazmat.2019.121261 Dueñas-Mas, M. J., Ballesteros-Gómez, A., & de Boer, J. (2023). Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 339, 139734. https://doi.org/10.1016/j.chemosphere.2023.139734 Encyclopedia of Soils in the Environment. (2023). Adsorption.(2nd ed. ). Elsevier, European Commission. (2025). EU roadmap on PFAS-free alternatives 2025–2030 (EUR 31256). https://op.europa.eu/en/publication-detail/-/publication/da7a8b7c-daa7-11ee-99e1-01aa75ed71a1 European Environmental Agency. (2023). PFAS pollution. https://www.eea.europa.eu/en/analysis/publications/pfas-pollution-in-european-waters European Union. (2024). Commission notice C/2024/4910, Technical guidelines regarding methods of analysis for monitoring of per- and polyfluoroalkyl substances (PFAS) in water intended for human consumption. European Union. (2021). Directive (EU) 2020/2184 on quality of water intended for human consumption (63). Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C. A., Smith, J. S., Roberts, C. H., & Knappe, D. R. U. (2021). Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40, 606–630. https://doi.org/10.1002/etc.4948 Fiedler, H., van der Veen, I., & de Boer, J. (2022). Assessment of four rounds of interlaboratory tests within the UNEP-coordinated POPs projects. Chemosphere, 288 (Pt 2), 132441.https://doi.org/10.1016/j.chemosphere.2021.132441 Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22 (12), 2345-2373. https://doi.org/10.1039/D0EM00291G Goss, K.-U. (2008). The pKa values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology, 42(2), 456–458.https://doi.org/10.1021/es702192c Gradiant. (2025). ForeverGone™: The industry’s first all-in-one PFAS removal and destruction solution. Gradiant. https://www.gradiant.com/pfas-forevergone/ Grandjean, P., & Clapp, R. (2015). Perfluorinated alkyl substances: Emerging insights into health risks. New Solutions: A Journal of Environmental and Occupational Health Policy, 25(2), 147–163. https://doi.org/10.2190/NS.25.2.c Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., Kutsuna, S., Osaka, I., & Arakawa, R. (2006). Efficient Decomposition of Environmentally Persistent Perfluorooctanesulfonate and Related Fluorochemicals Using Zerovalent Iron in Subcritical Water. Environmental Science & Technology, 40(3), 1049-1054. https://doi.org/10.1021/es0517419 IDTechEx Ltd. (2025). PFAS treatment 2025–2035 s: Technologies, regulations, players, applications. IDTechEx Ltd. Kissa, E. (2001). Fluorinated surfactants and repellents (2nd ed. ). Marcel Dekker. Kwiatkowski, C. F., Andrews, D. Q., Birnbaum, L. S., Bruton, T. A., DeWitt, J. C., Knappe, D. R., & Sunderland, E. M. (2020). Scientific basis for managing PFAS as a chemical class. Environmental Science & Technology Letters, 7 (8), 532–543. https://doi.org/10.1021/acs.estlett.0c00255 Interstate Technology & Regulatory Council[ITRC]. (2023). 4 physical and chemical properties. https://pfas-1.itrcweb.org/4-physical-and-chemical-properties/ Interstate Technology & Regulatory Council[ITRC]. (2023). 12 treatment technologies—PFAS—Per- and polyfluoroalkyl substances. https://pfas-1.itrcweb.org/12-treatment-technologies/ Lang, J. R., Allred, B. M., Peaslee, G. F., Field, J. A., & Barlaz, M. A. (2016). Release of per- and polyfluoroalkyl substances (PFASs) from carpet and clothing in model anaerobic landfill reactors. Environmental Science & Technology, 50 (10), 5024-5032. https://doi.org/10.1021/acs.est.6b00293 Lee, Y.-C., Wang, P.-Y., Lo, S.-L., & Huang, C. P. (2017). Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 173, 280-285. https://doi.org/10.1016/j.seppur.2016.09.012 Lee, Y.-C., Li, Y.-F., Lo, S.-L., Kuo, J., Sun, W., & Hu, C.-Y. (2022). Decomposition of perfluorooctanic acid by carbon aerogel with persulfate. Chemical Engineering Journal, 430, 132900. https://doi.org/10.1016/j.cej.2021.132900 Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., & Chang, D.-G. (2009). Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research, 43 (11), 2811-2816.https://doi.org/10.1016/j.watres.2009.03.052 Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., Liou, Y.-H., & Chen, M.-L.(2010). Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Research, 44(3), 886-892.https://doi.org/10.1016/j.watres.2009.09.055 Lee, Y.-C., Li, Y.-F., Chen, M.-J., Chen, Y.-C., Kuo, J., & Lo, S.-L.(2020). Efficient decomposition of perfluorooctanic acid by persulfate with iron-modified activated carbon. Water Research, 174, 115618. https://doi.org/10.1016/j.watres.2020.115618 Lee, Y.-C., Liu, Y.-H., Lin, J.-C., Hu, C.-Y., Kuo, J., Lin, Y.-C., & Lo, S.-L.(2024). UV/Sulfite reduction kinetics of perfluorobutane sulfonic acid (PFBS), perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Separation and Purification Technology, 347, 127505.https://doi.org/10.1016/j.seppur.2024.127505 Li, S., Oliva, P., Zhang, L., Goodrich, J. A., McConnell, R., Conti, D. V., Chatzi, L., & Aung, M. (2025). Associations between PFAS in drinking water and county-level cancer incidence in the United States, 2016–2021. Journal of Exposure Science & Environmental Epidemiology, 35, 425–436. https://doi.org/10.1038/s41370-024-00742-2 Li, Y.-F., Hu, C.-Y., Lee, Y.-C., & Lo, S.-L (2022). Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. Chemosphere, 288(P13), 132665.https://doi.org/10.1016/j.chemosphere.2021.132665 Lin, J.-C., Lo, S.-L., Hu, C.-Y., Lee, Y.-C., & Kuo, J. (2015). Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrasonics Sonochemistry, 22, 542-547.https://doi.org/10.1016/j.ultsonch.2014.06.006 Lin, J. C., Hu, C. Y., & Lo, S. L. (2016). Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrasonics Sonochemistry, 28, 130-135. https://doi.org/10.1016/j.ultsonch.2015.07.007 Liu, Y., Hu, X.-M., Zhao, Y., Wang, J., Lu, M.-X., Peng, F.-H., & Bao, J.(2018). Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 201, 303-309. https://doi.org/10.1016/j.chemosphere.2018.02.129 Liao, S., Arshadi, M., Woodcock, M. J., Saleeba, Z. S. S. L., Pinchbeck, D., Liu, C., Cápiro, N. L., Abriola, L. M., & Pennell, K. D. (2022). Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances. Environmental Science & Technology, 56 (12), 7976-7985. https://doi.org/10.1021/acs.est.2c01318 McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., & Ahrens, L. (2017). Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research, 120, 77–87. https://doi.org/10.1016/j.watres.2017.04.057 McCleaf, P., Stefansson, W., & Ahrens, L. (2023). Drinking water nanofiltration with concentrate foam fractionation-A novel approach for removal of per-and polyfluoroalkyl substances (PFAS). Water Research, 232, 119688. https://doi.org/10.1016/j.watres.2023.119688 Michigan Department of Environment, Great Lakes, and Energy. (2018). 2018 PFAS sampling of drinking water supplies in Michigan. https://downloads.regulations.gov/EPA-HQ-OW-2019-0583-0253/attachment_3.pdf Michigan PFAS Action Response Team. (2025). Michigan PFAS sites and areas of interest. Michigan Department of Environment, Great Lakes, and Energy. https://www.michigan.gov/pfasresponse/-/media/Project/Websites/PFAS-Response/Investigations/Michigan-PFAS-Sites.pdf Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., & Maeda, Y. (2005). Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environmental Science & Technology, 39 (9), 3388-3392. https://doi.org/10.1021/es040342v National Defense Authorization Act for Fiscal Year 2020, Pub. L. 116-92, 133 Stat. 1198 (2019) National Academies of Sciences, Engineering, and Medicine. (2022). Guidance on PFAS exposure, testing, and clinical follow-up. National Academies Press (US).https://pubmed.ncbi.nlm.nih.gov/35939564/ OECD. (2021). Reconciling terminology of the universe of per- and polyfluoroalkyl substances: Recommendations and practical guidance (OECD Ser. Risk Manag. - No. 61) Office of Environmental Health Hazard Assessment. (n.d. ). Notification levels for chemicals in drinking water. California Environmental Protection Agency. https://www.oehha.ca.gov/water/notification-levels-chemicals-drinking-water Ohoro, C. R., Amaku, J. F., Conradie, J., Olisah, C., Akpomie, K. G., Malloum, A., Akpotu, S. O., Adegoke, K. A., Okeke, E. S., & Omotola, E. O. (2024). Effect of physicochemical parameters on the occurrence of per- and. Marine Pollution Bulletin, 208, 117040.https://doi.org/10.1016/j.marpolbul.2024.117040 Oliaei, F., Kriens, D., Weber, R., & Watson, A. (2013). PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environmental Science and Pollution Research, 20, 1977–1992.https://doi.org/10.1007/s11356-012-1174-4 Palma, D., Richard, C., & Minella, M. (2022). State of the art and perspectives about non-thermal plasma applications for the removal of PFAS in water. Chemical Engineering Journal Advances, 10, 100253.https://doi.org/10.1016/j.ceja.2022.100253 Panchangam, S. C., Lin, A. Y.-C., Tsai, J.-H., & Lin, C.-F. (2009). Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere, 75 (5), 654-660.https://doi.org/10.1016/j.chemosphere.2008.12.065 Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, 93-117.https://doi.org/10.1016/j.envres.2012.03.003 Post, G. B., Gleason, J. A., & Cooper, K. R. (2017). Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS Biology, 15 (12), e2002855.https://doi.org/10.1371/journal.pbio.2002855 Sadia, M. N. I., Helmus, R., ter Laak, T. L., Béen, F., Praetorius, A., & van Wezel, A. P. (2023). Occurrence, fate, and related health risks of PFAS in raw and produced drinking water. Environmental Science & Technology, 57 (6), 3062–3074. https://doi.org/10.1021/acs.est.2c07976 Schultz, M. M., Barofsky, D. F., & Field, J. A. (2003). Fluorinated alkyl surfactants. Environmental Engineering Science, 20 (5), 487-501.https://doi.org/10.1089/109287503322151834 Smith, S. J., Lauria, M., Ahrens, L., McCleaf, P., Hollman, P., Bjälkefur Seroka, S., Hamers, T., Arp, H. P. H., & Wiberg, K. (2023). Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam─A Pilot-Scale Study. ACS ES&T Water, 3 (4), 1201-1211.https://doi.org/10.1021/acsestwater.2c00660 Southerland, E., & Birnbaum, L. S. (2023). What limits will the World Health Organization recommend for PFOA and PFOS in drinking water? Environmental Science & Technology, 57 (18), 7103–7105.https://doi.org/10.1021/acs.est.3c02724 Steinle-Darling, E., & Reinhard, M. (2008). Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals. Environmental Science & Technology, 42 (14), 5292-5297. https://doi.org/10.1021/es703207s Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental health perspectives, 118 (8), 1100–1108.https://doi.org/10.1289/ehp.0901827 Stockholm Convention on Persistent Organic Pollutants. (2024). All POPs listed in the Stockholm Convention. United Nations Environment Programme.https://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx Stockholm Convention on Persistent Organic Pollutants. (2024). Draft indicative list of long-chain perfluorocarboxylic acids, their salts and related compounds. UNEP/POPS/POPRC.20/INF/17. Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 260, 127659.https://doi.org/10.1016/j.chemosphere.2020.127659 Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental science & technology, 40 (23), 7343–7349. https://doi.org/10.1021/es060831q Tshangana, C. S., Nhlengethwa, S. T., Glass, S., Denison, S., Kuvarega, A. T., Nkambule, T. T. I., Mamba, B. B., Alvarez, P. J. J., & Muleja, A. A. (2025). Technology status to treat PFAS-contaminated water and limiting factors for their effective full-scale application. npj Clean Water, 8, Article 57. https://www.nature.com/articles/s41545-025-00457-3 Tushar, M. M. R., Pushan, Z. A., Aich, N., & Rowles, L. S. (2024). Balancing sustainability goals and treatment efficacy for PFAS removal from water. npj Clean Water, 7 (1), 130. https://doi.org/10.1038/s41545-024-00427-1 U.S. Environmental Protection Agency. (2023). Effluent guidelines program plan 15 (pp. 1-67). https://www.epa.gov/system/files/documents/2023-01/11143_ELG%20Plan%2015_508.pdf U.S. Environmental Protection Agency. (2024). History of the Clean Water Act. https://www.epa.gov/laws-regulations/history-clean-water-act U.S. Environmental Protection Agency. (2019). Method 533: Determination of PFAS in drinking water by isotope dilution anion exchange SPE and LC/MS/MS.https://www.epa.gov/dwanalyticalmethods/method-533-determination-and-polyfluoroalkyl-substances-drinking-water-isotope U.S. Environmental Protection Agency. (2009). Method 537: Determination of selected PFAS in drinking water by SPE and LC/MS/MS https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=343042 U.S. Environmental Protection Agency. (2023). Monitoring unregulated contaminants in drinking water. https://www.epa.gov/dwucmr U.S. Environmental Protection Agency. (1975). National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations U.S. Environmental Protection Agency. (1972). National Pollutant Discharge Elimination System.https://www.epa.gov/climate-change-water-sector/national-pollutant-discharge-elimination-system-program U.S. Environmental Protection Agency. (2021). PFAS strategic roadmap: EPA's commitments to action 2021-2024.https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap_final-508.pdf U.S. Environmental Protection Agency. (2024). PFAS treatment in wastewater: Case study of Wisconsin foam fractionation project (EPA/600/R-24/210). https://www.epa.gov/pfas/wisconsin-foam-fractionation U.S. Environmental Protection Agency. (1974). Safe Drinking Water Act (SDWA) https://www.epa.gov/sdwa U.S. Environmental Protection Agency. (2023) CompTox chemicals dashboard.https://comptox.epa.gov/dashboard/ United Nations Environment Programme. (2021). Proposal to list long-chain perfluorocarboxylic acids, their salts and related compounds in Annexes A, B and/or C to the Stockholm Convention on Persistent Organic Pollutants.https://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-POPRC.17-10-Add.1-Rev.1.English.pdf United Nations Environment Programme. (2020). their evaluation reports/documents/Bi-ennial Global Interlaboratory Assessment on Persistent Organic Pollutants – Fourth Round 2018/2019.https://wedocs.unep.org/bitstream/handle/20.500.11822/30923/R4-Interlab-POPs.pdf Van der Veen, I., Fiedler, H., & de Boer, J. (2023). Assessment of the per- and polyfluoroalkyl substances analysis under the Stockholm Convention - 2018/2019. Chemosphere, 313, 137549. https://doi.org/10.1016/j.chemosphere.2022.137549 Wang, F., & Shih, K. (2011). Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water research, 45 (9), 2925–2930. https://doi.org/10.1016/j.watres.2011.03.007 Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J. S., & Giesy, J. P. (2015). A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere, 129, 87–99.https://doi.org/10.1016/j.chemosphere.2014.09.021 Wang, Z., Cousins, I. T., Scheringer, M., & Hungerbühler, K. (2011). A review of current knowledge concerning the occurrence, fate and toxicity of perfluorinated compounds in the environment. Science of the Total Environment, 409 (8), 1813–1835. https://doi.org/10.1016/j.scitotenv.2010.11.011 Wang, Z., Cousins, I. T., Scheringer, M., Buck, R. C., & Hungerbühler, K. (2013). A review on environmental fate and exposure pathways of perfluoroalkyl substances. Chemosphere, 91 (6), 725–732. https://doi.org/10.1016/j.chemosphere.2013.02.009 Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environmental Science & Technology, 51 (5), 2508–2518. https://doi.org/10.1021/acs.est.6b04806 Wisconsin Department of Natural Resources. (2024). PFAS remediation at French Island Landfill: Full-scale foam fractionation implementation.https://dnr.wisconsin.gov/topic/PFAS/FrenchIsland World Health Organization & UN-Water. (2021). Summary progress update 2021: SDG 6 – Water and sanitation for all. https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf World Health Organization. (2022). PFOS and PFOA in drinking-water: Background document for development of WHO guidelines for drinking-water quality. https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/chemical-hazards-in-drinking-water/per-and-polyfluoroalkyl-substances World Health Organization. (2021). Guidelines on sanitation and health.https://iris.who.int/bitstream/handle/10665/274939/9789241514705-eng.pdf World Health Organization. (2018). Developing drinking-water quality regulations and standards: General guidance with a special focus on countries with limited resources.https://iris.who.int/bitstream/handle/10665/272969/9789241513944-eng.pdf Xiao, F., Simcik, M. F., & Gulliver, J. S. (2013). Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water research, 47(1), 49–56. https://doi.org/10.1016/j.watres.2012.09.024 Xiao, F., Sasi, P. C., Yao, B., Kubátová, A., Golovko, S. A., Golovko, M. Y., & Soli, D. (2020). Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environmental Science & Technology Letters, 7 (5), 343-350. https://doi.org/10.1021/acs.estlett.0c00174 Yao, Y., Volchek, K., Brown, C. E., Robinson, A., & Obal, T. (2014). Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water. Water science and technology : a journal of the International Association on Water Pollution Research, 70 (12), 1983–1991. https://doi.org/10.2166/wst.2014.445 Zahm, S., Bonde, J. P., Chiu, W. A., Hoppin, J., Kanno, J., Abdallah, M., Blystone, C. R., Calkins, M. M., Dong, G.-H., Dorman, D. C., Fry, R., Guo, H., Haug, L. S., Hofmann, J. N., Iwasaki, M., Machala, M., Mancini, F. R., Maria-Engler, S. S., Møller, P.,…Schubauer-Berigan, M. K. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. The Lancet Oncology, 25(1), 16-17. https://doi.org/10.1016/S1470-2045(23)00622-8 日本環境省. (2024). Guidance on response to PFOS and PFOA (2nd Edition) [PFOS 及び PFOA に関する対応の手引き(第2版)] https://www.env.go.jp/content/000073850.pdf 日本環境省. (2024). Survey results on PFOS and PFOA in water supply systems (Water supply and waterworks operations)水道におけるPFOS及びPFOAに関する調査の結果について(水道事業及び水道用水供給事業分). https://www.env.go.jp/press/press_04025.html 環境部(2024)。飲用水管理法規。環境部。https://www.moenv.gov.tw/page/DD3D35651815886C 環境部(2024)。主管法規查詢系統。環境部。https://oaout.moenv.gov.tw/law/LawCategoryMain.aspx?CategoryID=1802 環境部(2025)。113年飲用水水質之新興污染物調查與管理計畫。環境部。https://epq.moenv.gov.tw | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98182 | - |
| dc.description.abstract | 全氟/多氟烷基物質(Per- and Polyfluoroalkyl Substances,PFAS)因其持久性和廣泛應用,已成為全球環境與健康問題的焦點。在人體暴露途徑中所佔比率最重的飲用水管理上,各國也在飲用水標準方面不斷加強PFAS的監管。像美國在《安全飲用水法》(Safe Drinking Water Act , SDWA)框架下,2023年發布修正首個國家主要飲用水標準(National Primary Drinking Water Regulation, NPDWR),設定了六種PFAS的最大污染物濃度(Maximum Contaminant Levels, MCL)。這一嚴格的標準旨在保護公眾健康,尤其是易敏感族群的兒童和孕婦。
常作為各項環境議題前驅的歐盟,不僅對氣候變遷有諸多管制手段,也對PFAS污染情形進行嚴格監管及管制措施。2020年歐盟委員會發布了新的飲用水指令,設定20種PFAS的總和限值(PFAS Total),以及PFAS總量限值(sum of PFAS),並鼓勵成員國制定更嚴格的標準。德國、荷蘭、瑞典等國家已經實施了更低的限制,顯示出歐洲對PFAS的高度關注。 以亞洲地區國家舉例,日本和韓國也著重關注PFAS問題。日本現在已經制定了PFOA和PFOS的飲用水標準;韓國則在2020年開始監測PFAS,並計劃在未來制定相關標準。 而台灣的環境部對PFAS的管理,除了原有的研究及監測,2022年發布了PFAS檢測方法指南,並鼓勵供水單位進行自主監測。2024年訂定的飲用水標準也跟上日本跟澳洲的限值;並且要求供水單位定期監測並符合標準,如無法在限期內符合標準則有處罰。與國際比較,台灣的PFAS監管仍處於初期階段,但已經展現出積極的態度。後續可參考國際管制經驗,研擬逐步加嚴標準及推行有效管理,發揮PFAS治理的成效。 綜上,PFAS飲用水法規的國際比較顯示,各國在監管標準和執行力度上存在差異,但都在朝著更嚴格的方向發展。隨著科學研究的進展和公眾意識的提高,全球對PFAS的監管將繼續加強,以保護環境和人類健康。 | zh_TW |
| dc.description.abstract | Per- and Polyfluoroalkyl Substances (PFAS) have become a global environmental and health concern due to their persistence and widespread use. In terms of drinking water management, which is the most important exposure route for human beings, various countries have been strengthening the regulation of PFAS in terms of drinking water standards. For example, under the framework of the Safe Drinking Water Act (SDWA), the U.S. will publish the first National Primary Drinking Water Regulation (NPDWR) for PFAS in 2023, which sets standards for 6 kinds of PFAS, setting Maximum Contaminant Levels (MCLs). This stringent standard is designed to protect public health, especially children and pregnant women in sensitive groups.
The European Union (EU), which has a strong focus on environmental issues, is not only concerned about climate change and carbon emissions, but also about the strict regulation of PFAS. 2020, the European Commission issued a new Drinking Water Directive, which sets 20 PFAS Total, as well as sum of PFAS, and encourages member states to set more stringent standards. Countries such as Germany, the Netherlands and Sweden have already implemented lower limits, demonstrating the high level of concern about PFAS in Europe. In Asia, Japan and Korea have also begun to pay attention to PFAS. Japan has developed PFOA and PFOS standards for drinking water; Korea will start monitoring PFAS in 2020, and plans to develop relevant standards in the future. Taiwan's Ministry of the Environment has also begun to pay attention to the PFAS issue, in addition to the original research and monitoring, in 2022 published a guide to PFAS testing methods, and encourage water supply units to carry out their own monitoring. 2024 drinking water standards are also set to follow the limits of Japan and Australia; and require water supply units to regularly monitor and comply with the standards, and penalties will be imposed if they do not comply with the standards in the deadline. Compared to international standards, Taiwan's PFAS regulation is still in its early stages, but it has shown a positive attitude. With reference to the international experience, more stringent standards and more effective management can be formulated to protect public health and to promote the effectiveness of PFAS control. In conclusion, an international comparison of PFAS drinking water regulations shows that there are differences in regulatory standards and enforcement efforts among countries, but they are all moving in the direction of greater stringency. With the progress of scientific research and public awareness, the global regulation of PFAS will continue to be strengthened to protect the environment and human health. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:14:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:14:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 I 摘要 II Abstract III 圖次 VII 表次 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與範圍 4 第二章 文獻回顧 6 2.1 PFAS定義、種類與物化性質 6 2.1.1 PFAS定義、種類 6 2.1.2 PFAS物化特性 10 2.2 PFAS的用途與健康危害 14 2.2.1 PFAS用途 14 2.2.2 PFAS暴露危害 19 2.3 全球PFAS飲用水污染現況分析 26 第三章 國際間飲用水中PFAS管制框架與研究趨勢 29 3.1 國際組織與公約 29 3.1.1 國際衛生組織飲用水規範 29 3.1.2 斯德哥爾摩公約 31 3.2 主要國家與區域飲用水中PFAS管制趨勢比較(美國、歐洲、亞洲) 37 3.2.1 美國飲用水PFAS管制現況與策略 37 3.2.2 歐洲飲用水PFAS管制現況與策略 46 3.2.3 亞洲飲用水PFAS管制現況與策略 51 第四章 國際PFAS飲用水管制標準比較、檢測方式及處理技術 53 4.1 國際PFAS飲用水管制標準管制範圍及標準比較 53 4.2 檢測方法 55 4.3 去除技術 57 4.4 國際間飲用水PFAS管制之優勢與評估 64 第五章 我國飲用水中PFAS管制現況與未來展望 68 5.1 我國現行飲用水中PFAS分布現況、挑戰與措施 68 5.2 國際趨勢對我國飲用水PFAS管制影響 72 5.3 我國飲用水PFAS管制之未來方向 77 第六章 結論與建議 80 6.1 結論 80 6.2 建議 82 參考資料 84 圖次 圖 1、PFAS研究發展趨勢 2 圖 2、密西根州PFAS污染分布圖 3 圖 3、研究流程 5 圖 4、PFAS分類圖 10 圖 5 、PFAS應用產品 14 圖 6 、PFAS分類及研究數量圖 16 圖 7 、PFAS來源及流布簡圖 21 圖 8 、PFAS對人體造成的潛在健康影響 23 圖 9、全球尺度下受到PFAS污染的地表水及地下水分布圖 26 圖 10、歷屆列入POPS清單後實施控制措施的締約國數量 35 圖 11、歐盟飲用水政策與法規制定相關單位及層級 49 圖 12、各國及國際規範中現行針對飲用水中PFAS規範限值 54 圖 13、台灣歷年PFAS檢出濃度變化 70 圖 14、台灣歷年PFAS檢出率變化 70 表次 表1、六種PFAS飲用水指引的物性化性比較 11 表2、PFAS主要應用產業領域及範例 17 表3、PFAS污染的地表水及地下水超過各國標準情形 27 表4、PFAS與斯德哥爾摩公約附件分類、數量及生效日 33 表5、NPDWR所管制的PFAS及其MCL、MCLG 40 表6、UCMR3 和 UCMR5 監測的主要PFAS 42 表7、加州針對PFAS訂定之NL、RL及施行日期 44 表8、PFAS總量、PFAS總和定義及檢測方法表 47 表9、國際間PFAS主要管制範圍、手段、濃度比較 54 表10、Method533及Method 537.1對於29種PFAS可檢測比較 56 表11、台灣飲用水水質標準PFAS第3-1條規範 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全氟與多氟烷基物質 | zh_TW |
| dc.subject | 水質安全 | zh_TW |
| dc.subject | 飲用水法規 | zh_TW |
| dc.subject | PFAS環境流布 | zh_TW |
| dc.subject | water safety | en |
| dc.subject | drinking water regulations | en |
| dc.subject | perfluorinated and polyfluoroalkyl substances | en |
| dc.subject | PFAS fate in the environment | en |
| dc.title | 飲用水中全氟與多氟烷基物質(PFAS)國際管制趨勢 | zh_TW |
| dc.title | International Regulatory Trends of Per- and Polyfluoroalkyl Substances (PFAS) in Drinking Water | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡景堯;李育輯 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Yao Hu;Yu-Chi Lee | en |
| dc.subject.keyword | 全氟與多氟烷基物質,水質安全,飲用水法規,PFAS環境流布, | zh_TW |
| dc.subject.keyword | perfluorinated and polyfluoroalkyl substances,water safety,drinking water regulations,PFAS fate in the environment, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202502310 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
