Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author徐藝庭zh_TW
dc.contributor.authorYi-Ting Hsuen
dc.date.accessioned2025-07-30T16:13:33Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation1. Ouyang, Y., et al., Recent progress in protective coatings against corrosion upon magnesium–lithium alloys: A critical review. Journal of Magnesium and Alloys, 2024.
2. Yan, Y., et al., Effect of rolling reduction and annealing process on microstructure and corrosion behavior of LZ91 alloy sheet. Transactions of Nonferrous Metals Society of China, 2020. 30(7): p. 1816–1825.
3. Perugu, C.S., S. Kumar, and S.J.J. Suwas, Evolution of microstructure, texture, and tensile properties in two-phase Mg-Li alloys: effect of Zn addition. Jom, 2020. 72(4): p. 1627–1637.
4. Song, Y., et al., Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 2009. 51(5): p. 1087–1094.
5. Hung, S.-M., et al., Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg–Li alloy. Journal of Materials Research and Technology, 2021. 11: p. 1953–1968.
6. Hung, S.-M., et al., Effect of bath temperature on the growth kinetics and characteristics of permanganate conversion coating on LZ91 magnesium alloy. Journal of Materials Research and Technology, 2024. 28: p. 4567–4576.
7. Cahn, R.W., et al., Structure and properties of nonferrous alloys. Materials Science and Technology, 2005.
8. Prasad, S.S., et al., The role and significance of Magnesium in modern day research-A review. Journal of Magnesium and alloys, 2022. 10(1): p. 1–61.
9. Wikipedia contributors. (n.d.). Table of standard electrode potentials. Wikipedia, The Free Encyclopedia. Retrieved June 19, 2025, from https://zh.wikipedia.org/zh-tw/%E6%A0%87%E5%87%86%E7%94%B5%E6%9E%81%E7%94%B5%E5%8A%BF.
10. Durdu, S. and M.J.A.S.S. Usta, Characterization and mechanical properties of coatings on magnesium by micro arc oxidation. Applied Surface Science, 2012. 261: p. 774–782.
11. Wu, L.-p., et al., Progress of electroplating and electroless plating on magnesium alloy. Transactions of Nonferrous Metals Society of China, 2010. 20: p. s630–s637.
12. Yamamoto, A., et al., Improvement of corrosion resistance of magnesium alloys by vapor deposition. Scripta materialia, 2001. 44(7): p. 1039–1042.
13. Chen, X.B., N. Birbilis, and T.B.J.C. Abbott, Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion, 2011. 67(3): 035005–1–035005–16.
14. Alaneme, K.K., E.A.J.J.o.m. Okotete, and alloys, Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. Journal of magnesium and alloys, 2017. 5(4): p. 460–475.
15. Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92–193.
16. Okamoto, H. and T. Massalski, Binary alloy phase diagrams. ASM International, Materials Park, OH, USA, 1990.
17. Moses, M., M. Ullmann, and U.J.M. Prahl, Influence of aluminum content on the microstructure, mechanical properties, and hot deformation behavior of Mg-Al-Zn alloys. Metals, 2023. 13(9): p. 1599.
18. Song, G., A. Atrens, and M.J.C.s. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science, 1998. 41(2): p. 249–273.
19. Jönsson, M., D. Thierry, and N.J.C.S. LeBozec, The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe. Corrosion Science, 2006. 48(5): p. 1193–1208.
20. Zander, D. and C.J.C.S. Schnatterer, The influence of manufacturing processes on the microstructure and corrosion of the AZ91D magnesium alloy evaluated using a computational image analysis. Corrosion Science, 2015. 98: p. 291–303.
21. Singh, I., et al., A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys, 2015. 3(2): p. 142–148.
22. Mena-Morcillo, E. and L. Veleva, Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: Effect of surface layer stability on electrochemical behaviour. Journal of Magnesium and Alloys, 2020. 8(3): p. 667–675.
23. Salman, S., R. Ichino, and M. Okido, A comparative electrochemical study of AZ31 and AZ91 magnesium alloy. International Journal of Corrosion, 2010. 2010(1): 412129.
24. Cheng, Y.-l., et al., Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2009. 19(3): p. 517–524.
25. Yang, H., et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature communications, 2020. 11(1): p. 401.
26. Song, Y., et al., The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corrosion science, 2012. 65: p. 322–330.
27. Zeng, R., et al., Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features. Journal of Alloys and Compounds, 2011. 509(13): p. 4462–4469.
28. Gupta, M. and S.N.M. Ling, Magnesium, magnesium alloys, and magnesium composites. 2011: John Wiley & Sons.
29. Becerra, A. and M. Pekguleryuz, Effects of zinc, lithium, and indium on the grain size of magnesium. Journal of Materials Research, 2009. 24: p. 1722–1729.
30. Chang, T.-C., et al., Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters, 2006. 60(27): p. 3272–3276.
31. Yang, Y., et al., Achieving ultra-strong Magnesium–lithium alloys by low-strain rotary swaging. Materials Research Letters, 2021. 9(6): p. 255–262.
32. Kim, W., et al., Ultrafine-grained Mg–9Li–1Zn alloy sheets exhibiting low temperature superplasticity. Materials Science and Engineering, 2009. 516(1-2): p. 17–22.
33. Nayeb-Hashemi, A.A. and J.B.J. Clark, Phase diagrams of binary magnesium alloys. ASM International, 1988 Metals Park 1988.
34. Feng, J., et al., Microstructure and corrosion properties for ultrahigh-pressure Mg-Li alloys. Corrosion Science, 2022. 206: 110519.
35. Xu, W., et al., A high-specific-strength and corrosion-resistant magnesium alloy. Nature materials, 2015. 14(12): p. 1229–1235.
36. Ji, Q., et al., High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes. Materials Characterization, 2020. 160: 110135.
37. Karami, M. and R. Mahmudi, Work hardening behavior of the extruded and equal-channel angularly pressed Mg–Li–Zn alloys under tensile and shear deformation modes. Materials Science and Engineering: A, 2014. 607: p. 512–520.
38. Li, C., et al., Effect of Zn addition on the microstructure and mechanical properties of as-cast BCC Mg-11Li based alloys. Journal of Alloys and Compounds, 2022. 895: 162718.
39. Yamamoto, A., et al., Precipitation in Mg-(4-13)% Li-(4-5)% Zn ternary alloys. Materials transactions, 2003. 44(4): p. 619–624.
40. Ji, H., et al., Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg-xLi-5Zn-0.5Er (x= 8, 10 and 12 wt%) alloys. Materials Characterization, 2020. 159: 110008.
41. Li, C., et al., Natural ageing responses of duplex structured Mg-Li based alloys. Scientific reports, 2017. 7(1): 40078.
42. Chiu, C.-H., et al., Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments. Journal of alloys and compounds, 2008. 460(1-2): p. 246–252.
43. Li, Y., et al., Effect of Heat Treatment on Low‐Cycle Fatigue Performance of LZ91 Mg–Li Alloy. Advanced Engineering Materials, 2021. 23(9): p. 2100281.
44. Yang, Y., et al., Effects of annealing temperature on microstructure and mechanical properties of LZ91 alloy. Materials Science and Technology, 2020. 36(18): p. 2010–2017.
45. Liu, X., et al., Influence of deformation on the corrosion behavior of LZ91 Mg—Li alloy. International Journal of Minerals, Metallurgy and Materials, 2023. 30(1): p. 72–81.
46. Hu, H., X. Nie, and Y. Ma, Corrosion and surface treatment of magnesium alloys. Magnesium Alloys-Properties in Solid and Liquid States, 2014. 1.
47. Song, G. and D. StJohn, The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals, 2002. 2(1): p. 1–16.
48. Gu, D.-D., et al., Effect of Mn modification on the corrosion susceptibility of Mg–Mn alloys by magnesium scrap. Acta Metallurgica Sinica (English Letters), 2021. 34: p. 1–11.
49. Yao, S., et al., Effect of manganese on microstructure and corrosion behavior of the Mg-3Al alloys. Metals, 2019. 9(4): p. 460.
50. Birbilis, N., et al., Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution. Electrochimica Acta, 2014. 132: p. 277–283.
51. Liu, M., et al., Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corrosion Science, 2009. 51(3): p. 602–619.
52. Makar, G. and J. Kruger, Corrosion of magnesium. International materials reviews, 1993. 38(3): p. 138–153.
53. JP, H., Corrosion studies of magnesium and its alloys. Trans Aime, 1942. 147: p. 273–299.
54. ASTM International, “ASTM B93/B93M-18: Standard Specification for Magnesium Alloys in Ingot Form for Sand Castings, Permanent Mold Castings, and Die Castings,” West Conshohocken, PA, USA, 2018.
55. ASTM International, “ASTM B80-15: Standard Specification for Magnesium-Alloy Sand Castings,” West Conshohocken, PA, USA, 2015.
56. International Organization for Standardization, “ISO 16220:2017: Magnesium and magnesium alloys — Primary magnesium — Specifications,” Geneva, Switzerland, 2017.
57. Han, G., et al., Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. Corrosion Science, 2012. 63: p. 316–322.
58. Ni, X., S. Xu, and H.J.F.i.M.E. Mu, Effect of Mn-content of ER5356 welding rods on mechanical properties of Al-alloys joints. Frontiers in Mechanical Engineering, 2024. 10: 1351922.
59. Yang, Y., et al., The enhancement of Mg corrosion resistance by alloying Mn and laser-melting. Materials, 2016. 9(4): p. 216.
60. Hsiao, T.-H. and C.-S.J.A.S.S. Lin, Mn oxide conversion coating on AZ31B Mg alloy with hexafluorozirconate as an inhibitor in the permanganate conversion bath. Applied Surface Science, 2024. 660: 159960.
61. Pourbaix, M., Atlas of Electrochemical Equilibria In Aqueous Solutions 2nd. 1974.
62. Song, G.-L., Corrosion electrochemistry of magnesium (Mg) and its alloys, in Corrosion of Magnesium alloys, C.o.M. alloys, Editor. 2011, Elsevier. p. 3–65.
63. Nordlien, J.H., et al., A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion science, 1997. 39(8): p. 1397–1414.
64. Pilling, N.J.J.I.M., The oxidation of metals at high temperature. Journal of the Institute of Metals, 1923. 29: p. 529–582.
65. Orlov, D., et al., Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia, 2011. 59(15): p. 6176–6186.
66. Schmutz, P., et al., Influence of dichromate ions on corrosion processes on pure magnesium. Journal of The Electrochemical Society, 2003. 150(4): p. B99.
67. Xiao, F., et al., Effect of pH on corrosion behavior of Al-Mg-Si alloy in NaCl solution. International Journal of Electrochemical Science, 2022. 17(11): 221162.
68. Song, Y., et al., Pitting corrosion of a rare earth Mg alloy GW93. Journal of materials science & technology, 2017. 33(9): p. 954–960.
69. Li, J., et al., Effect of yttrium modification on the corrosion behavior of AZ63 magnesium alloy in sodium chloride solution. Journal of magnesium and alloys, 2021. 9(2): p. 613–626.
70. Williams, G. and R. Grace, Chloride-induced filiform corrosion of organic-coated magnesium. Electrochimica Acta, 2011. 56(4): p. 1894–1903.
71. Bautista, A., Filiform corrosion in polymer-coated metals. Progress in Organic Coatings, 1996. 28(1): p. 49–58.
72. Wang, H., et al., Characterization of filiform corrosion of Mg–3Zn Mg alloy. Journal of The Electrochemical Society, 2017. 164(9): p. C574.
73. Baril, G. and N. Pebere, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion science, 2001. 43(3): p. 471–484.
74. Ambat, R., N.N. Aung, and W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion science, 2000. 42(8): p. 1433–1455.
75. Williams, G., H. ap Llwyd Dafydd, and R. Grace, The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte studied by a scanning vibrating electrode technique. Electrochimica Acta, 2013. 109: p. 489–501.
76. Lunder, O., et al., Corrosion morphologies on magnesium alloy AZ 91. Materials and Corrosion, 1994. 45(6): p. 331–340.
77. Li, Z., et al., Microstructure and corrosion of cast magnesium alloy ZK60 in NaCl solution. Materials, 2020. 13(17): p. 3833.
78. Shao, Z., et al., Real-time in situ observation of the corrosion process of die-cast AZ91D magnesium alloy in NaCl solutions under galvanostatic polarization. Corrosion Science, 2021. 192: 109834.
79. Kou, J. and D. Ma, Galvanic corrosion based on wire beam electrode technique: progress and prospects. Corrosion Reviews, 2022. 40(3): p. 205–220.
80. Atrens, A., et al., Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials, 2015. 17(4): p. 400–453.
81. Sun, Y., et al., Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2 Zr alloys (x= 5, 8, 11 wt.%). Corrosion Science, 2020. 167: 108487.
82. JP, H.J.T.A., Corrosion studies of magnesium and its alloys. Trans AIME 147 273-299, 1942. 147: p. 273–299.
83. Castaño-González, J., et al., Methods for evaluation of corrosion rate on magnesium alloys: a review;[Métodos para evaluar la tasa de corrosión en aleaciones de magnesio: revisión]. 2024.
84. Standard Guide for Laboratory Immersion Corrosion Testing of Metal, ASTM G31-21, 2021. [Online]. Available: https://www.astm.org/g0031-21.html.
85. S. Guan, J. Hu, L. Wang, S. Zhu, H. Wang, J. Wang, W. Li, and et al., “Mg alloys development and surface modification for biomedical application,” in Magnesium Alloys- Corrosion and Surface Treatments, F. Czerwinski, Ed. Rijeka, Croatia: InTech, 2011. [Online]. Available: https://doi.org/10.5772/13187.
86. Song, G., Recent progress in corrosion and protection of magnesium alloys. Advanced engineering materials, 2005. 7(7): p. 563–586.
87. Liu, L., et al., Degradation rates of pure zinc, magnesium, and magnesium alloys measured by volume loss, mass loss, and hydrogen evolution. Applied Sciences, 2018. 8(9): p. 1459.
88. Gaon, O., et al., The effect of the local microstructure of MRI 201S magnesium alloy on its corrosion rate. Corrosion Science, 2015. 93: p. 167–171.
89. Abidin, N.I.Z., D. Martin, and A. Atrens, Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0. 2Mn in Hank’s solution at room temperature. Corrosion Science, 2011. 53(3): p. 862–872.
90. Zhao, M.-C., et al., Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008. 50(7): p. 1939–1953.
91. Ma, Y., H. Xiong, and B. Chen, Effect of heat treatment on microstructure and corrosion behavior of Mg-5Al-1Zn-1Sn magnesium alloy. Corrosion Science, 2021. 191: 109759.
92. Lamaka, S., et al., Comprehensive screening of Mg corrosion inhibitors. Corrosion Science, 2017. 128: p. 224–240.
93. Mueller, W.-D., Electrochemical techniques for assessment of corrosion behaviour of Mg and Mg-alloys. BioNanoMaterials, 2015. 16(1): p. 31–39.
94. Xue, D., et al., Corrosion protection of biodegradable magnesium implants using anodization. Materials Science and Engineering: C, 2011. 31(2): p. 215–223.
95. Zhao, M.C., et al., Influence of Microstructure on Corrosion of As‐cast ZE41. Advanced Engineering Materials, 2008. 10(1‐2): p. 104–111.
96. James, W., et al., The difference effect on magnesium dissolving in acids. Journal of The Electrochemical Society, 1963. 110(11): p. 1117.
97. Song, G., et al., The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 1997. 39(10): p. 1981-2004.
98. Atrens, A. and W. Dietzel, The negative difference effect and unipositive Mg+. Advanced Engineering Materials, 2007. 9(4): p. 292-297.
99. McNulty, R.E. and J.D. Hanawalt, Some Corrosion Characteristics of High Purity Magnesium Alloys. Transactions of The Electrochemical Society, 1942. 81(1): p. 423.
100. Salleh, S.H., et al., Enhanced hydrogen evolution on Mg (OH)2 covered Mg surfaces. Electrochimica Acta, 2015. 161: p. 144-152.
101. Cain, T., et al., Evidence of the Enrichment of Transition Metal Elements on Corroding Magnesium Surfaces Using Rutherford Backscattering Spectrometry. Journal of The Electrochemical Society, 2015. 162(6): p. C228.
102. Cain, T.W., et al., The Role of Surface Films and Dissolution Products on the Negative Difference Effect for Magnesium: Comparison of Cl− versus Cl− Free Solutions. Journal of The Electrochemical Society, 2017. 164(6): p. C300.
103. Song, G.-L. and K.A. Unocic, The anodic surface film and hydrogen evolution on Mg. Corrosion Science, 2015. 98: p. 758-765.
104. Curioni, M., The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2014. 120: p. 284-292.
105. Fajardo, S. and G.S.J.E.A. Frankel, Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta, 2015. 165: p. 255–267.
106. Yang, Y., F. Scenini, and M. Curioni, A study on magnesium corrosion by real time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica Acta, 2016. 198: p. 174-184.
107. Shi, Z., M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion science, 2010. 52(2): p. 579–588.
108. Feliu Jr, S., Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals, 2020. 10(6): p. 775.
109. Du, Y., et al., Corrosion behavior of a Mg–Zn–Ca–La alloy in 3.5 wt% NaCl solution. Journal of Magnesium and Alloys, 2022. 10(2): p. 527–539.
110. Zhang, H., et al., Impact of rare earth elements on micro-galvanic corrosion in magnesium alloys: A comparative study of Mg-Nd and Mg-Y binary alloys. International Journal of Electrochemical Science, 2023. 18(6): 100160.
111. Santamaria, M., et al., Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS). Electrochimica Acta, 2007. 53(3): p. 1314–1324.
112. Chu, Y.R., Citrate Conversion Coating on AZ31 Magnesium Alloys. 2015.
113. Simaranov, A., A. Marshakov, and Y.N.J.P.o.M. Mikhailovskii, Formation of conversion coatings on magnesium in moderately acid chromate solutions. Protection of Metals, 1989. 25(5): p. 611–618.
114. Sankara Narayanan, T.J.R.i.A.M.S., Surface pretretament by phosphate conversion coatings-A review. Reviews in Advanced Materials Science, 2005. 9: p. 130–177.
115. Hagans, P.L. and C.M. Haas, Chromate conversion coatings, in Surface engineering. 1994, ASM International. p. 405–411.
116. Simaranov, A., A. Marshakov, and Y.N.J.P.o.M. Mikhailovskii, Formation of conversion coatings on magnesium in moderately acid chromate solutions. Protection of Metals, 1989. 25(5): p. 611–618.
117. European Parliament and Council of the European Union. Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official Journal of the European Union, L174/88, 2011.
118. United States Occupational Safety and Health Administration (OSHA). Occupational exposure to hexavalent chromium; Final Rule. Federal Register, 71(39), 10099–10385, 2006.
119. Japanese Ministry of Economy, Trade and Industry (METI). J-MOSS (Japan RoHS): Marking for the presence of the specific chemical substances for electrical and electronic equipment. 2006.
120. Vaghefinazari, B., et al., Chromate-free corrosion protection strategies for magnesium alloys—a review: PART I—pre-treatment and conversion coating. Materials, 2022. 15(23): p. 8676.
121. Li, G., et al., A black phosphate coating for C1008 steel. Surface and Coatings Technology, 2004. 176(2): p. 215–221.
122. Tsai, C.-Y., et al., A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet. Corrosion Science, 2010. 52(10): p. 3385–3393.
123. Tsai, C.-Y., et al., Effect of Mg2+ on the microstructure and corrosion resistance of the phosphate conversion coating on hot-dip galvanized sheet steel. Corrosion science, 2010. 52(12): p. 3907–3916.
124. Lin, C., et al., Formation of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Journal of The Electrochemical Society, 2006. 153(3): p. B90.
125. Lee, Y., et al., Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013. 70: p. 74–81.
126. Harvey, T.J.C.E., Science and Technology, Cerium-based conversion coatings on aluminium alloys: a process review. Corrosion Engineering, Science and Technology, 2013, 2013. 48(4): p. 248–269.
127. Grulke, E., et al., Nanoceria: factors affecting its pro-and anti-oxidant properties. Environ. Sci., 2014. 1(5): p. 429–444.
128. Lee, Y., et al., Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Applied Surface Science, 2013. 276: p. 578–585.
129. Cui, X., et al., Influence of substrate composition on the formation of phytic acid conversion coatings. Materials and Corrosion, 2012. 63(3): p. 215–222.
130. Gao, L., et al., Phytic acid conversion coating on Mg–Li alloy. Journal of Alloys and Compounds, 2009. 485(1-2): p. 789–793.
131. Lin, Y.-J., et al., A MnO2-ZrO2 composite conversion coating to enhance. the corrosion resistance of WE43-T5 Mg alloys. Corrosion Science, 2025. 248: 112795.
132. Jian, S.-Y. and K.-L. Chang, Effect of cerium ion on the microstructure and properties of permanganate conversion coating on LZ91 magnesium alloy. Applied Surface Science, 2020. 509: 144767.
133. Jian, S.-Y., et al., The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium. Materials & Design, 2020. 192: 108707.
134. Standard, A., Standars Test Methods for Measuring Adhesion by Tape Test. D3359-09E02, 2009.
135. Materials Project. (2024). MgLi₂Zn (mp-1222610) Crystal Structure Information. Retrieved June 18, 2025, from https://next-gen.materialsproject.org/materials/mp-1222610?chemsys=Mg-Li-Zn.
136. Hovington, P., et al., Can we detect Li KX‐ray in lithium compounds using energy dispersive spectroscopy? Scanning, 2016. 38(6): p. 571–578.
137. Zhou, P., et al., Revisiting the cracking of chemical conversion coating on magnesium alloys. Corrosion Science, 2021. 178: 109069.
138. Wang, G., et al., Developing improved mechanical property and corrosion resistance of Mg-9Li alloy via solid-solution treatment. Metals, 2019. 9(9): p. 920.
139. Chu, P.-W., E. Le Mire, and E.A. Marquis, Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution. Corrosion Science, 2017. 128: p. 253–264.
140. Williams, G. and H.N. McMurray, Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique. Journal of the electrochemical Society, 2008. 155(7): p. C340.
141. Chen, H.-W., et al., The Initial Corrosion Behavior of AZ31B Magnesium Alloy in Chloride and Sulfate Solutions. Journal of The Electrochemical Society, 2022. 169(8): 081504.
142. Chu, P.-W. and E.A. Marquis, Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corrosion Science, 2015. 101: p. 94–104.
143. Danaie, M., et al., The cathodic behaviour of Al–Mn precipitates during atmospheric and saline aqueous corrosion of a sand-cast AM50 alloy. Corrosion Science, 2014. 83: p. 299–309.
144. Atrens, A., X. Chen, and Z. Shi, Mg corrosion—recent progress. Corrosion and Materials Degradation, 2022. 3(4): p. 566–597.
145. Tompkins, F., The kinetics of the reaction between manganous and permanganate ions. Transactions of the Faraday Society, 1942. 38: p. 131–139.
146. Morrow, J.I. and S. Perlman, Kinetic study of the permanganate-manganous ion reaction to form manganic ion in sulfuric acid media. Inorganic Chemistry, 1973. 12(10): p. 2453–2455.
147. Song, D., et al., Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corrosion science, 2010. 52(2): p. 481–490.
148. Song, D., et al., Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. corrosion science, 2011. 53(1): p. 362–373.
149. Fu, Y.-H. and P.-W. Chu, Localized corrosion behavior and surface corrosion film microstructure of a commercial dual-phase LZ91 Mg alloy. npj Materials Degradation, 2025. 9(1): p. 19.
150. Dong, L., et al., Corrosion behavior of a eutectic Mg–8Li alloy in NaCl solution. Electrochemistry Communications, 2021. 129: 107087.
151. Wang, B., et al., Anisotropic corrosion behavior of hot-rolled Mg-8 wt.% Li alloy. Journal of Materials Science & Technology, 2020. 53: p. 102–111.
152. Xu, D. and E. Han, Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg–Li alloy. Scripta Materialia, 2014. 71: p. 21–24.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98178-
dc.description.abstractLZ91雙相鎂鋰合金由HCP結構的α-Mg與BCC結構的β-Li所組成,兩者分別提供材料之強度與延展性,使其成為極具潛力的輕量化材料。然而,LZ91合金在大尺度上有雙相微結構誘發的伽凡尼效應,在小尺度上同樣有晶出相與析出相的微小電池對,使局部腐蝕更加劇烈。LZ91較差的抗蝕性限制了其在工業上的應用。本研究首先針對LZ91鎂鋰合金進行基材與二次相的分析,再使用過錳酸鹽化成處理使底材表面生長一層化成膜,再透過腐蝕測試比較化成前後LZ91合金之抗蝕性並同時探討二次相對化成處理的影響。
為了解LZ91鎂鋰合金之基材與二次相,首先使用XRD、EBSD等進行相鑑定與微結構形貌觀察。接著,將40 ℃ 0.1 M KMnO4化成液以濃硫酸調整至pH=1.5,再對LZ91底材進行20與50 s化成處理。化成膜之形貌與組成分別由SEM與EDS等分析方法觀測。最後,透過OCP、PDP、即時攝影、浸泡試驗與析氫等腐蝕測試方法了解腐蝕產物層與化成膜的抗蝕性與腐蝕行為。
研究結果顯示,LZ91鎂鋰合金的二次相除了有雙相隨機分布的微米級晶出Fe-Mn相,還有析出於β-Li晶界與晶粒內部、α/β相界之次微米級MgLi2Zn相。在過錳酸鹽化成處理20 s後,LZ91合金均勻披覆一層完整連續的化成膜;50 s化成處理則因化成膜過厚而產生脫水裂紋。此外,化成處理使較陰極的MgLi2Zn上方長出較厚的富錳顆粒狀膜層,Fe-Mn相則無此沉積現象。
在0.05 M NaCl腐蝕測試溶液中,LZ91合金化成20 s樣品在PDP與析氫試驗等腐蝕測試結果中顯示最佳的抗蝕性。然而,其Fe-Mn相周圍的膜層不均使化成膜抗蝕效果受限。化成50 s樣品則因化成膜裂紋導致不均勻的腐蝕產物層、嚴重的絲狀腐蝕與化成膜剝離,使腐蝕程度較未處理樣品來得嚴重。此外,未處理、化成20與50 s樣品的腐蝕行為可區分為First Stage與Second Stage,兩階段的腐蝕擴展皆主要發生於β-Li。
zh_TW
dc.description.abstractThe LZ91 dual-phase Mg–Li alloy, consisting of α-Mg with an HCP structure and β-Li with a BCC structure, exhibits a promising balance of strength and ductility, making it an attractive candidate for lightweight structural applications. However, its poor corrosion resistance, resulting from macroscopic galvanic coupling between the dual phases as well as localized micro-galvanic cells formed by constituent particles and precipitates, significantly limits its industrial applications. In this study, the matrix and secondary phases of the LZ91 alloy were first systematically analyzed. Subsequently, a permanganate conversion treatment was applied to form a conversion coating on the substrate surface. Corrosion tests were then performed to compare the corrosion resistance of the alloy before and after the treatment, while the influence of secondary phases on the conversion process was also investigated.
To study the matrix and secondary phases in detail, phase identification and microstructural analysis were conducted using XRD and EBSD. The 0.1 M KMnO₄ solution, acidified to pH 1.5 with H₂SO₄ and maintained at 40 °C, was used to form conversion coatings on the LZ91 alloy for immersion durations of 20 and 50 s. The morphology and composition of the conversion coatings were characterized using SEM and EDS. Finally, the corrosion performance was evaluated by OCP, PDP, real-time monitoring, immersion tests, and hydrogen evolution tests.
The results indicate that the secondary phases in the LZ91 Mg–Li alloy include micron-sized dual-phase randomly distributed Fe–Mn constituent particles, as well as submicron MgLi₂Zn precipitates at the β-Li grain boundaries, within β-Li grains, and along the α/β phase interfaces. After 20 s of conversion treatment, the LZ91 alloy was uniformly coated with a continuous and intact film. However, the 50 s treatment resulted in dehydration cracks due to the excessive thickness of the coating. Notably, the conversion process formed a thicker Mn-rich particulate film on the more cathodic MgLi₂Zn precipitates, whereas no such deposition was observed on the Fe–Mn particles.
In 0.05 M NaCl test solution, the 20 s conversion-treated LZ91 sample exhibited the best corrosion resistance in both PDP and hydrogen evolution tests. However, the non-uniform coating surrounding the Fe–Mn particles limited the overall protective effectiveness of the conversion coating. In contrast, the 50 s conversion-treated sample showed more severe corrosion than the untreated sample, attributed to coating cracks that caused an uneven corrosion product layer, pronounced filiform corrosion, and delamination of the conversion coating. Furthermore, the corrosion behavior of untreated, 20 s, and 50 s conversion-coated samples could be distinguished into a first stage and a second stage, both of which exhibit corrosion propagation primarily within the β-Li phase.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:13:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:13:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 x
表次 xiv
第一章 前言 1
第二章 文獻回顧 2
2.1 鎂合金簡介 2
2.1.1 鎂合金的設計 4
2.1.1.1 鎂鋁系列合金 4
2.1.1.2 鎂鋅系列合金 5
2.1.1.3 鎂鋰系列合金 7
2.1.1.4 鎂鋰鋅系列合金 8
2.1.2 微量元素的影響 11
2.1.2.1 鐵 11
2.1.2.2 錳 12
2.2 鎂的腐蝕 13
2.2.1 純鎂的腐蝕 14
2.2.2 鎂合金的腐蝕 16
2.2.3 腐蝕量測 19
2.3 鎂合金的化成處理 23
2.3.1 鉻酸鹽化成處理 24
2.3.2 磷酸鹽化成處理 26
2.3.3 鈰鹽化成處理 27
2.3.4 植酸鹽化成處理 29
2.3.5 錳酸鹽化成處理 30
第三章 實驗步驟與方法 33
3.1 實驗流程 33
3.2 試片製備 34
3.2.1 實驗材料與藥品 34
3.2.2 試片研磨與拋光 34
3.2.3 化學蝕刻 34
3.2.4 化成處理 35
3.3 機械性質量測 35
3.3.1 奈米壓痕儀 35
3.3.2 維氏硬度試驗 36
3.4 微結構分析與方法 36
3.4.1 X光繞射儀 36
3.4.2 光學顯微鏡 37
3.4.3 掃描式電子顯微鏡 37
3.4.4 掃描穿透式電子顯微鏡 38
3.4.5 能量色散X射線譜 39
3.4.6 背向散射電子繞射 40
3.5 腐蝕測試 40
3.5.1 電化學測試 41
3.5.1.1 開路電位 41
3.5.1.2 動電位極化曲線 41
3.5.2 即時攝影 42
3.5.3 浸泡測試 42
3.5.4 析氫試驗 42
3.6 化成膜附著性測量 43
第四章 實驗結果與討論 45
4.1 LZ91鎂鋰合金底材 45
4.1.1 基材分析 45
4.1.2 二次相分析 53
4.2 LZ91鎂鋰合金化成處理 58
4.2.1 巨觀皮膜表面色澤 58
4.2.2 表面形貌 58
4.2.3 橫截面 64
4.2.4 附著性測試 65
4.3 腐蝕測試 66
4.3.1 開路電位 66
4.3.2 動電位極化 68
4.3.2.1 極化曲線 68
4.3.2.2 極化前後之形貌 70
4.3.3 即時攝影 74
4.3.3.1 腐蝕形貌 74
4.3.3.2 OCP 77
4.3.4 浸泡試驗 80
4.3.4.1 腐蝕階段觀察 80
4.3.4.2 腐蝕面積觀察 94
4.3.5 析氫試驗 99
4.4 二次相對化成處理的影響 102
4.4.1 化成行為 102
4.4.2 腐蝕行為 109
第五章 結論 115
第六章 未來展望 117
參考文獻 118
-
dc.language.isozh_TW-
dc.subjectLZ91zh_TW
dc.subject過錳酸鹽化成處理zh_TW
dc.subject絲狀腐蝕zh_TW
dc.subject伽凡尼腐蝕zh_TW
dc.subject二次相zh_TW
dc.subjectSecondary phasesen
dc.subjectGalvanic corrosionen
dc.subjectFiliform corrosionen
dc.subjectLZ91en
dc.subjectPermanganate conversion treatmenten
dc.titleLZ91鎂鋰合金之二次相對過錳酸鹽化成處理的影響zh_TW
dc.titleEffect of Secondary Phases on Permanganate Conversion Treatment of LZ91 Mg-Li Alloyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡文達;林景崎;汪俊延;朱鵬維zh_TW
dc.contributor.oralexamcommitteeWen-Ta Tsai;Jing-Chie Lin;Jun-Yen Uan;Peng-Wei Chuen
dc.subject.keyword過錳酸鹽化成處理,LZ91,二次相,伽凡尼腐蝕,絲狀腐蝕,zh_TW
dc.subject.keywordPermanganate conversion treatment,LZ91,Secondary phases,Galvanic corrosion,Filiform corrosion,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202502498-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved