Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98177Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 闕居振 | zh_TW |
| dc.contributor.advisor | Chu-Chen Chueh | en |
| dc.contributor.author | 鄧宇翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Teng | en |
| dc.date.accessioned | 2025-07-30T16:13:20Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 1. Ren, Z., et al. (2021). "Strategies toward efficient blue perovskite light‐emitting diodes." Advanced Functional Materials 31(30): 2100516.
2. Brittman, S., et al. (2015). "The expanding world of hybrid perovskites: materials properties and emerging applications." MRS communications 5(1): 7-26. 3. Zhu, P. and J. Zhu (2020). "Low‐dimensional metal halide perovskites and related optoelectronic applications." InfoMat 2(2): 341-378. 4. Zhang, L., et al. (2023). "Advances in the application of perovskite materials." Nano-Micro Letters 15(1): 177. 5. Protesescu, L., et al. (2015). "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15(6): 3692-3696. 6. Liu, Y., et al. (2025). "Light‐Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals." Advanced Materials: 2415606. 7. Liu, A., et al. (2021). "Electroluminescence principle and performance improvement of metal halide perovskite light‐emitting diodes." Advanced Optical Materials 9(18): 2002167. 8. Sun, C., et al. (2021). "High-performance large-area quasi-2D perovskite light-emitting diodes." Nature communications 12(1): 2207. 9. Quan, L. N., et al. (2017). "Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission." Nano letters 17(6): 3701-3709. 10. Saki, Z., et al. (2021). "Solution-processed perovskite thin-films: the journey from lab-to large-scale solar cells." Energy & Environmental Science 14(11): 5690-5722. 11. Round, H. J. (1991). A note on carborundum. Semiconductor devices: pioneering papers, World Scientific: 879-879. 12. Holonyak Jr, N. and S. F. Bevacqua (1991). Coherent (visible) light emission from Ga (As1− x P x) junctions. Semiconductor Devices: Pioneering Papers, World Scientific: 898-899. 13. Pimputkar, S., et al. (2009). "Prospects for LED lighting." Nature photonics 3(4): 180-182. 14. Nakamura, S., et al. (1995). "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures." Japanese journal of applied physics 34(7A): L797. 15. Tang, C. W. and S. A. VanSlyke (1987). "Organic electroluminescent diodes." Applied physics letters 51(12): 913-915. 16. Schubert, E. F. (2006). Light-emitting diodes, Cambridge university press. 17. Le Minh, H., et al. (2008). "High-speed visible light communications using multiple-resonant equalization." IEEE photonics technology letters 20(14): 1243-1245. 18. Shah, A., et al. (1999). "Photovoltaic technology: the case for thin-film solar cells." science 285(5428): 692-698. 19. Sutherland, B. R. and E. H. Sargent (2016). "Perovskite photonic sources." Nature photonics 10(5): 295-302. 20. Snaith, H. J. (2013). "Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells." The journal of physical chemistry letters 4(21): 3623-3630. 21. Kieslich, G., et al. (2015). "An extended tolerance factor approach for organic–inorganic perovskites." Chemical science 6(6): 3430-3433. 22. Chen, Y., et al. (2018). "2D Ruddlesden–Popper perovskites for optoelectronics." Advanced Materials 30(2): 1703487. 23. Kojima, A., et al. (2009). "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the american chemical society 131(17): 6050-6051. 24. Lee, M. M., et al. (2012). "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." science 338(6107): 643-647. 25. Lin, K., et al. (2018). "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent." Nature 562(7726): 245-248. 26. Li, Y., et al. (2025). "Flexible perovskite light-emitting diodes: recent progress, applications and challenges." npj Flexible Electronics 9(1): 32. 27. Tan, Z.-K., et al. (2014). "Bright light-emitting diodes based on organometal halide perovskite." Nature nanotechnology 9(9): 687-692. 28. Zhao, L., et al. (2019). "Improved outcoupling efficiency and stability of perovskite light‐emitting diodes using thin emitting layers." Advanced Materials 31(2): 1805836. 29. Shen, X., et al. (2023). "Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes." Joule 7(2): 272-308. 30. Muscarella, L. A., et al. (2022). "Nanopatterning of perovskite thin films for enhanced and directional light emission." ACS Applied Materials & Interfaces 14(33): 38067-38076. 31. Yang, X., et al. (2023). "Focus on perovskite emitters in blue light-emitting diodes." Light: Science & Applications 12(1): 177. 32. Gualdrón-Reyes, A. s. F., et al. (2018). "Controlling the phase segregation in mixed halide perovskites through nanocrystal size." ACS Energy Letters 4(1): 54-62. 33. Pan, G., et al. (2020). "Bright Blue Light Emission of Ni2+ Ion-Doped CsPbCl x Br3–x Perovskite Quantum Dots Enabling Efficient Light-Emitting Devices." ACS Applied Materials & Interfaces 12(12): 14195-14202. 34. Gao, Y., et al. (2022). "Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes." Journal of Colloid and Interface Science 607: 1796-1804. 35. Ren, Z., et al. (2021). "High‐performance blue perovskite light‐emitting diodes enabled by efficient energy transfer between coupled quasi‐2D perovskite layers." Advanced Materials 33(1): 2005570. 36. Zhang, L., et al. (2021). "High-performance quasi-2D perovskite light-emitting diodes: from materials to devices." Light: Science & Applications 10(1): 61. 37. Zhou, M., et al. (2019). "Manipulating the phase distributions and carrier transfers in hybrid quasi‐two‐dimensional perovskite films." Solar RRL 3(4): 1800359. 38. Zhou, W., et al. (2023). "Manipulating ionic behavior with bifunctional additives for efficient sky‐blue perovskite light‐emitting diodes." Advanced Functional Materials 33(27): 2301425. 39. Caiazzo, A. (2021). Effect of Co-Solvents on the Crystallization and Phase Distribution of Quasi-2D Perovskites. 2021 MRS Fall Meeting & Exibit. 40. Ye, Z., et al. (2022). "Efficient quasi-2D perovskite light-emitting diodes enabled by regulating phase distribution with a fluorinated organic cation." Nanomaterials 12(19): 3495. 41. Ulicna, S., Dou, B., Kim, D. H., et al. (2018). Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Applied Energy Materials, 1(4), 1853–1857. 42. Li, D., et al. (2022). "Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing." Materials Futures 1(1): 015301. 43. Patidar, R., et al. (2020). "Slot-die coating of perovskite solar cells: An overview." Materials Today Communications 22: 100808. 44. Wang, N., et al. (2016). "Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells." Nature Photonics 10(11): 699-704. 45. Ko, P. K., et al. (2024). "The Deepest Blue: Major Advances and Challenges in Deep Blue Emitting Quasi‐2D and Nanocrystalline Perovskite LEDs." Advanced Materials: 2407764. 46. Jiang, Y., et al. (2019). "Spectra stable blue perovskite light-emitting diodes." Nature communications 10(1): 1868. 47. Dong, J., et al. (2025). "Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes." Nature Nanotechnology: 1-8. 48. Shen, Y., et al. (2021). "Interfacial “anchoring effect” enables efficient large‐area sky‐blue perovskite light‐emitting diodes." Advanced Science 8(19): 2102213. 49. Li, P., et al. (2024). "Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes Achieved through the Passivation of Multi-Fluorine Phosphate Molecules." Micromachines 15(6): 799. 50. Shen, C., et al. (2024). "High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering." Advanced Photonics 6(2): 026002-026002. 51. Meng, F., et al. (2024). "High-performance sky-blue quasi-2D perovskite light-emitting diodes via synergistic defect passivation and phase narrowing strategies." Chemical Engineering Journal 496: 154188. 52. Zhang, X., et al. (2023). "Heterointerface engineering of perovskite defects and energetics for light-emitting diodes." Nano Research 16(4): 5525-5532. 53. Zhao, Y., et al. (2023). "Efficient perovskite light-emitting diodes by buried interface modification with triphenylphosphine oxide." ACS Applied Materials & Interfaces 15(2): 3644-3650. 54. Zhang, F., et al. (2024). "Phase distribution management for high-efficiency and bright blue perovskite light-emitting diodes." Nano Energy 120: 109144. 55. Zou, Y., et al. (2018). "Boosting perovskite light-emitting diode performance via tailoring interfacial contact." ACS Applied Materials & Interfaces 10(28): 24320-24326. 56. Li, Z., et al. (2023). "Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes." Nature communications 14(1): 6441. 57. Hu, L., et al. (2024). "Assembling the 2D–3D–2D Heterostructure of Quasi-2D Perovskites for High-Performance Solar Cells." ACS Applied Materials & Interfaces 16(32): 42221-42229. 58. Li, P., et al. (2023). "Ligand engineering in tin-based perovskite solar cells." Nano-micro letters 15(1): 167. 59. Xing, J., et al. (2018). "Color-stable highly luminescent sky-blue perovskite light-emitting diodes." Nature communications 9(1): 3541. 60. Wang, H., et al. (2024). "Efficient Quasi-2D Perovskite Based Blue Light-Emitting Diodes with Carbon Dots Modified Hole Transport Layer." Nano Letters 24(28): 8702-8708. 61. Li, F., et al. (2023). "Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability." Nature Photonics 17(6): 478-484. 62. Yuan, S., et al. (2024). "Efficient blue electroluminescence from reduced-dimensional perovskites." Nature Photonics 18(5): 425-431. 63. Bao, X., et al. (2023). "Molecular bridging strategy enables high performance and stable quasi-2D perovskite light-emitting devices." ACS Energy Letters 8(2): 1018-1025. 64. Wang, Q., et al. (2023). "Molecularly designing a passivation ETL to suppress EQE roll-off of PeLEDs." ACS Energy Letters 8(9): 3710-3719. 65. Yuan, F., et al. (2020). "Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites." Science advances 6(42): eabb0253. 66. Liang, A., et al. (2021). "Highly Efficient Halide Perovskite Light‐Emitting Diodes via Molecular Passivation." Angewandte Chemie International Edition 60(15): 8337-8343. 67. Liu, J., et al. (2017). "Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films." Journal of the American Chemical Society 139(4): 1432-1435. 68. Canil, L., et al. (2021). "Tuning halide perovskite energy levels." Energy & Environmental Science 14(3): 1429-1438. 69. Lin, Y. K., et al. (2023). "Realizing High Brightness Quasi‐2D Perovskite Light‐Emitting Diodes with Reduced Efficiency Roll‐Off via Multifunctional Interface Engineering." Advanced Science 10(26): 2302232. 70. Zeng, X., et al. (2023). "High Curvature PEDOT: PSS Transport Layer Toward Enhanced Perovskite Light‐Emitting Diodes." Small 19(47): 2304411. 71. Chen, C. H., et al. (2024). "Enhancing the Performance of 2D Tin‐Based Pure Red Perovskite Light‐Emitting Diodes through the Synergistic Effect of Natural Antioxidants and Cyclic Molecular Additives." Small 20(25): 2307774. 72. Zhang, C., et al. (2024). "Color/Spectral Stability of Mixed Halide Perovskite Light‐Emitting Diodes." Advanced Functional Materials 34(27): 2314762. 73. Yu, H., et al. (2021). "Color-stable blue light-emitting diodes enabled by effective passivation of mixed halide perovskites." The Journal of Physical Chemistry Letters 12(26): 6041-6047. 74. Vashishtha, P. and J. E. Halpert (2017). "Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes." Chemistry of Materials 29(14): 5965-5973. 75. Jang, C. H., et al. (2020). "Sky-blue-emissive perovskite light-emitting diodes: Crystal growth and interfacial control using conjugated polyelectrolytes as a hole-transporting layer." ACS nano 14(10): 13246-13255. 76. Shen, Y., et al. (2021). "Interfacial potassium‐guided grain growth for efficient deep‐blue perovskite light‐emitting diodes." Advanced Functional Materials 31(6): 2006736. 77. Zhang, C., et al. (2023). "A hole injection monolayer enables cost-effective perovskite light-emitting diodes." Journal of Materials Chemistry C 11(8): 2851-2862. 78. Li, S., et al. (2024). "Surface Treatment Engineering Enables Highly Efficient Perovskite Light-Emitting Diodes with Significantly Enhanced Modulation Speed." ACS Photonics 11(11): 4716-4724. 79. Peng, C., et al. (2024). "High-Performance Thermally Evaporated Blue Perovskite Light-Emitting Diodes Enabled by Post-Evaporation Passivation." Chemical Engineering Journal 499: 155955. 80. Guo, Y., et al. (2024). "Perfluorooctanoic acid interface modification enabling efficient true-blue perovskite light-emitting diodes and air-processing compatibility." Chemical Engineering Journal 490: 151764. 81. Wang, B. F., et al. (2025). "Enhanced Electroluminescence and Stability of Sky‐Blue Perovskite Light‐Emitting Diodes." Angewandte Chemie International Edition 64(11): e202419746. 82. Mao, J., et al. (2018). "All-perovskite emission architecture for white light-emitting diodes." ACS nano 12(10): 10486-10492. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98177 | - |
| dc.description.abstract | 鈣鈣鈦礦光發光二極體(Perovskite light-emitting diodes, PeLEDs)因具備高光致發光量子效率(PLQY)、可調變的發射波長及狹窄的發光光譜,被視為下一代顯示與照明技術的有力競爭者。然而,相較於綠光與紅光 PeLED 已取得顯著進展,高效率且穩定的藍光元件仍面臨嚴峻挑戰,核心問題包括相純度不足、陷阱態密度過高以及能階排列不匹配。本研究即聚焦於系統性地解決上述瓶頸。
本研究於第二章中提出一種雙功能分子工程策略,使用鹽酸4-胍基苯甲酸(4-guanidinobenzoic acid hydrochloride, GBAC)同時作為埋入式界面層與前驅體添加劑。當GBAC應用於埋入式界面時,可顯著提升基底表面潤濕性與前驅液展布性,進而改善鈣鈦礦薄膜的結晶行為與形貌,同時使空穴傳輸層與發光層之間的能階排列更加平順,降低注入障礙。另一方面,作為添加劑時,GBAC中的胍基可與鈣鈦礦中未配位的鉛離子產生靜電作用,鈍化陷阱態並降低非輻射復合;其羧酸基團則可與PEABr(苯乙胺溴化物)末端的胺基形成氫鍵,抑制小n(n = 1–2)相的生成,並促進中高n相的成長,有效提升能量轉移效率。經GBAC雙重處理後製備之元件展現出更佳的光譜穩定性、降低的啟動電壓及提升至10.6%的外部量子效率(EQE),並維持穩定的天藍色發光(約489 nm)。 於第三章中,我們基於目前的研究成果提出後續發展的潛在方向,未來的研究可包括透過氯離子摻雜進一步調控鈣鈦礦能隙,以實現更深藍且符合 Rec. 2100 顯示標準的高色純度藍光發射;亦可探討對鈣鈦礦上表面進行修飾,以鈍化表面缺陷並提升抗濕氣穩定性。此外,開發具備內在抗氧抗濕能力的材料設計策略,有助於提升藍光PeLED在大氣環境中的操作穩定性,推進其實際應用之可能性。最後,本研究所建立的GBAC分子平台亦為未來白光PeLED的實現提供可能基礎,可藉由多色域鈣鈦礦共沉積或與下轉換螢光材料整合達成多波段發光功能。透過上述策略,有望進一步拓展鈣鈦礦發光元件於次世代光電技術中的應用價值與可靠性。 本研究提出的GBAC雙功能工程策略,提供了解決全溴化準二維鈣鈦礦在相分佈、界面工程與缺陷鈍化上的有效方法,為實現高效率、光譜穩定且具商業應用潛力的藍光PeLED奠定了堅實基礎。 | zh_TW |
| dc.description.abstract | Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for next-generation display and lighting technologies due to their high photoluminescence quantum yield (PLQY), tunable emission, and narrow spectral bandwidth. Despite remarkable progress in green and red PeLEDs, achieving efficient and stable blue emission remains a significant challenge, primarily due to the poor phase purity, high trap density, and unfavorable energy level alignment. Addressing them forms the central objective of this study.
Herein, in Chapter 2, we present a dual-functional molecular engineering strategy using 4-guanidinobenzoic acid hydrochloride (GBAC), applied both as a buried interfacial layer and as an in-bulk additive. When used at the buried interface, GBAC significantly enhances surface wettability and precursor spreading, enabling improved crystallization and film morphology. This additional layer also facilitates a more favorable energy level alignment between the hole transport layer and the perovskite emissive layer, reducing injection barriers. Simultaneously, in the bulk, the guanidinium moiety of GBAC electrostatically coordinates with undercoordinated Pb²⁺ trap states, suppressing the non-radiative recombination, while the carboxylic acid group forms hydrogen bonds with the ammonium end of phenethylammonium bromide (PEABr), reducing the formation of undesirable low-n (n = 1–2) phases and promote the growth of intermediate- to high-n domains, enhancing energy funneling. Devices fabricated with dual GBAC treatment exhibited enhanced spectral stability, reduced turn-on voltage and improved EQE up to 10.6% at sky-blue emission (~489 nm). In Chapter 3, we propose future research directions based on the current findings. First, bandgap tuning toward deeper-blue emission can be achieved via chloride incorporation to meet Rec. 2100 display standards. Second, surface modification of the top perovskite layer could mitigate moisture-induced degradation by passivating surface traps. Third, intrinsic strategies to enhance ambient stability of blue PeLEDs are essential for real-world deployment. Finally, the developed GBAC platform may serve as a stepping stone toward white-light PeLEDs by enabling multi-color emission either through perovskite domain co-deposition or hybrid phosphor integration. This study provides a comprehensive strategy for addressing phase distribution, interfacial engineering, and defect passivation in all-bromide quasi-2D perovskites, paving the way for efficient, spectrally stable, and commercially viable blue PeLEDs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:13:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:13:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iv Content vi Table Captions ix Figure Captions x Chapter 1. Introduction 1 1.1 Introduction to Light-Emitting Diodes 1 1.1.1 Background 1 1.1.2 Characteristics of LEDs 2 1.1.3 Working Principle of LEDs 3 1.2 Perovskite light emitting diodes (PeLEDs) 4 1.2.1 Introduction of perovskite 4 1.2.2 Performance matrices for PeLEDs 9 1.2.3 Composition Engineering for Blue Emission 11 1.3 Dimensional Engineering in Bule PeLEDs 13 1.3.1 Deposition engineering for PeLEDs 14 1.3.2 Challenges and Opportunities 16 1.4 Background Overview 18 1.4.1 Additive Engineering for Defect Passivation 19 1.4.2 Buried Interface Optimization 20 Figures 22 Chapter 2. Sky-Blue Perovskite Light-Emitting Diodes Enhanced via Guanidinium-Based Dual-Functional Engineering 33 2.1 Introduction 33 2.2 Experimental Section 35 2.2.1 Materials 35 2.2.2 Precursor solution preparation 36 2.2.3 Device fabrication 37 2.2.4 Film and Device Characterization 38 2.3 Result and Discussion 40 2.3.1 Schematic and fabrication overview 40 2.3.2 Crystallinity and phase distribution 41 2.3.3 Interaction mechanism 48 2.3.4 Optical properties analysis 50 2.3.5 Carrier dynamics analysis 53 2.3.6 PeLED device performance 54 2.3.7 Electrical Characterization and defect analysis 57 Figures 62 Tables 83 Chapter 3. Future work 85 3.1 Bandgap Tuning Toward Deep-Blue Emission via Chloride Incorporation 85 3.2 Surface Modification of the Perovskite Top Layer 88 3.3 Enhancing Ambient Stability for Air-Compatible Blue PeLEDs 90 3.4 Toward White-Light Emission Based on Blue PeLED Platforms 91 Figures 93 Chapter 4. Conclusion 99 Reference 101 | - |
| dc.language.iso | en | - |
| dc.subject | 鈣鈦礦發光二極體 | zh_TW |
| dc.subject | 藍光發射 | zh_TW |
| dc.subject | 雙功能分子工程 | zh_TW |
| dc.subject | 缺陷鈍化 | zh_TW |
| dc.subject | 相分佈調控 | zh_TW |
| dc.subject | phase distribution regulation | en |
| dc.subject | perovskite light emitting diodes | en |
| dc.subject | blue emission | en |
| dc.subject | dual-functional molecular engineering | en |
| dc.subject | defect passivation | en |
| dc.title | 以胍基雙功能設計提升之天空藍鈣鈦礦發光二極體 | zh_TW |
| dc.title | Sky-Blue Perovskite Light-Emitting Diodes Enhanced via Guanidinium-Based Dual-Functional Engineering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文亞;黃裕清;郭霽慶 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ya Lee;Yu-Ching Huang;Chi-Ching Kuo | en |
| dc.subject.keyword | 鈣鈦礦發光二極體,藍光發射,雙功能分子工程,缺陷鈍化,相分佈調控, | zh_TW |
| dc.subject.keyword | perovskite light emitting diodes,blue emission,dual-functional molecular engineering,defect passivation,phase distribution regulation, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202502548 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 4.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
