Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98162
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorKevin C.-W. Wuen
dc.contributor.author鍾憶慈zh_TW
dc.contributor.authorYi-Tzu Chungen
dc.date.accessioned2025-07-30T16:10:01Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citation[1] Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. https://gco.iarc.who.int/today (accessed 2025-01-20).
[2] Fines, C.; McCarthy, H.; Buckley, N., The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025, 26, 2472432.
[3] World Health Organization Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed 2025-06-02).
[4] Vasconcelos, I.; Hussainzada, A.; Berger, S.; Fietze, E.; Linke, J.; Siedentopf, F.; Schoenegg, W., The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast 2016, 29, 181-5.
[5] DePolo, J. Breast Cancer Hormone Receptor Status. https://www.breastcancer.org/pathology-report/hormone-receptor-status (accessed 2025-05-16).
[6] DePolo, J. HER2 Status. https://www.breastcancer.org/pathology-report/her2-status (accessed 2025-05-16).
[7] Schonk, D. M.; Kuijpers, H. J.; van Drunen, E.; van Dalen, C. H.; Geurts van Kessel, A. H.; Verheijen, R.; Ramaekers, F. C., Assignment of the gene(s) involved in the expression of the proliferation-related Ki-67 antigen to human chromosome 10. Hum. Genet. 1989, 83, 297-9.
[8] Davey, M. G.; Hynes, S. O.; Kerin, M. J.; Miller, N.; Lowery, A. J., Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers (Basel) 2021, 13.
[9] Mahmoud, R.; Ordóñez-Morán, P.; Allegrucci, C., Challenges for Triple Negative Breast Cancer Treatment: Defeating Heterogeneity and Cancer Stemness. Cancers 2022, 14.
[10] Bakrania, A. K.; Variya, B. C.; Patel, S. S., Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol. Res. 2016, 111, 577-591.
[11] Gradishar, W. J., Taxanes for the treatment of metastatic breast cancer. Breast Cancer (Auckl) 2012, 6, 159-71.
[12] National Health Insurance Administration 健保用藥品項網路查詢服務. https://info.nhi.gov.tw/INAE3000/INAE3000S01 (accessed 2025-06-13).
[13] Selleckchem Paclitaxel. https://www.selleckchem.com/products/Paclitaxel(Taxol).html (accessed 2025-06-12).
[14] Markman, M., Managing taxane toxicities. Supportive Care in Cancer 2003, 11, 144-147.
[15] Verstappen, C. C. P.; Heimans, J. J.; Hoekman, K.; Postma, T. J., Neurotoxic Complications of Chemotherapy in Patients with Cancer. Drugs 2003, 63, 1549-1563.
[16] Clancy, S.; Brown, W., Translation: DNA to mRNA to Protein. Nature Education 2008, 1, 101.
[17] Zeiger, E., 3.10 - Genetic Toxicology Testing. In Comprehensive Toxicology (Second Edition), McQueen, C. A., Ed. Elsevier: Oxford, 2010; pp 139-158.
[18] Dupont, C.; Armant, D. R.; Brenner, C. A., Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009, 27, 351-7.
[19] Wu, H.; Sun, Y. E., Epigenetic Regulation of Stem Cell Differentiation. Pediatric Research 2006, 59, 21-25.
[20] Fraga, M. F.; Ballestar, E.; Paz, M. F.; Ropero, S.; Setien, F.; Ballestar, M. L.; Heine-Suñer, D.; Cigudosa, J. C.; Urioste, M.; Benitez, J.; Boix-Chornet, M.; Sanchez-Aguilera, A.; Ling, C.; Carlsson, E.; Poulsen, P.; Vaag, A.; Stephan, Z.; Spector, T. D.; Wu, Y.-Z.; Plass, C.; Esteller, M., Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences 2005, 102, 10604-10609.
[21] Gartstein, M. A.; Skinner, M. K., Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018, 30, 1269-1303.
[22] Yao, Q.; Chen, Y.; Zhou, X., The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019, 51, 11-17.
[23] Bélanger, É.; Laprise, C., Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? International Journal of Molecular Sciences 2021, 22, 8921.
[24] Cao, J.; Yan, Q., Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012, 2, 26.
[25] Al Aboud, N. M.; Tupper, C.; Jialal, I., Genetics, Epigenetic Mechanism. In StatPearls, StatPearls Publishing: Treasure Island (FL), 2023.
[26] Zhao, Y.; Garcia, B. A., Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015, 7, a025064.
[27] Institut Pasteur An imaging and modeling approach to characterize the structure of DNA in human cells. https://www.pasteur.fr/en/research-journal/news/imaging-and-modeling-approach-characterize-structure-dna-human-cells (accessed 2025-06-04).
[28] CUSABIO team Unraveling the Dynamic World of Histone Modifications: Implications in Gene Regulation and Disease Pathogenesis. https://www.cusabio.com/c-20829.html (accessed 2025-06-04).
[29] Zoghbi, H. Y.; Beaudet, A. L., Epigenetics and Human Disease. Cold Spring Harb Perspect Biol 2016, 8, a019497.
[30] Das, P. M.; Ramachandran, K.; vanWert, J.; Singal, R., Chromatin immunoprecipitation assay. BioTechniques 2004, 37, 961-9.
[31] Collas, P., The Current State of Chromatin Immunoprecipitation. Mol. Biotechnol. 2010, 45, 87-100.
[32] Jaenisch, R.; Bird, A., Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245-254.
[33] Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.-Y.; Schones, D. E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K., High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129, 823-837.
[34] Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M. J.; Amin, V.; Whitaker, J. W.; Schultz, M. D.; Ward, L. D.; Sarkar, A.; Quon, G.; Sandstrom, R. S.; Eaton, M. L.; Wu, Y.-C.; Pfenning, A.; Wang, X.; ClaussnitzerYaping Liu, M.; Coarfa, C.; Alan Harris, R.; Shoresh, N.; Epstein, C. B.; Gjoneska, E.; Leung, D.; Xie, W.; David Hawkins, R.; Lister, R.; Hong, C.; Gascard, P.; Mungall, A. J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T. K.; Scott Hansen, R.; Kaul, R.; Sabo, P. J.; Bansal, M. S.; Carles, A.; Dixon, J. R.; Farh, K.-H.; Feizi, S.; Karlic, R.; Kim, A.-R.; Kulkarni, A.; Li, D.; Lowdon, R.; Elliott, G.; Mercer, T. R.; Neph, S. J.; Onuchic, V.; Polak, P.; Rajagopal, N.; Ray, P.; Sallari, R. C.; Siebenthall, K. T.; Sinnott-Armstrong, N. A.; Stevens, M.; Thurman, R. E.; Wu, J.; Zhang, B.; Zhou, X.; Abdennur, N.; Adli, M.; Akerman, M.; Barrera, L.; Antosiewicz-Bourget, J.; Ballinger, T.; Barnes, M. J.; Bates, D.; Bell, R. J. A.; Bennett, D. A.; Bianco, K.; Bock, C.; Boyle, P.; Brinchmann, J.; Caballero-Campo, P.; Camahort, R.; Carrasco-Alfonso, M. J.; Charnecki, T.; Chen, H.; Chen, Z.; Cheng, J. B.; Cho, S.; Chu, A.; Chung, W.-Y.; Cowan, C.; Athena Deng, Q.; Deshpande, V.; Diegel, M.; Ding, B.; Durham, T.; Echipare, L.; Edsall, L.; Flowers, D.; Genbacev-Krtolica, O.; Gifford, C.; Gillespie, S.; Giste, E.; Glass, I. A.; Gnirke, A.; Gormley, M.; Gu, H.; Gu, J.; Hafler, D. A.; Hangauer, M. J.; Hariharan, M.; Hatan, M.; Haugen, E.; He, Y.; Heimfeld, S.; Herlofsen, S.; Hou, Z.; Humbert, R.; Issner, R.; Jackson, A. R.; Jia, H.; Jiang, P.; Johnson, A. K.; Kadlecek, T.; Kamoh, B.; Kapidzic, M.; Kent, J.; Kim, A.; Kleinewietfeld, M.; Klugman, S.; Krishnan, J.; Kuan, S.; Kutyavin, T.; Lee, A.-Y.; Lee, K.; Li, J.; Li, N.; Li, Y.; Ligon, K. L.; Lin, S.; Lin, Y.; Liu, J.; Liu, Y.; Luckey, C. J.; Ma, Y. P.; Maire, C.; Marson, A.; Mattick, J. S.; Mayo, M.; McMaster, M.; Metsky, H.; Mikkelsen, T.; Miller, D.; Miri, M.; Mukame, E.; Nagarajan, R. P.; Neri, F.; Nery, J.; Nguyen, T.; O’Geen, H.; Paithankar, S.; Papayannopoulou, T.; Pelizzola, M.; Plettner, P.; Propson, N. E.; Raghuraman, S.; Raney, B. J.; Raubitschek, A.; Reynolds, A. P.; Richards, H.; Riehle, K.; Rinaudo, P.; Robinson, J. F.; Rockweiler, N. B.; Rosen, E.; Rynes, E.; Schein, J.; Sears, R.; Sejnowski, T.; Shafer, A.; Shen, L.; Shoemaker, R.; Sigaroudinia, M.; Slukvin, I.; Stehling-Sun, S.; Stewart, R.; Subramanian, S. L.; Suknuntha, K.; Swanson, S.; Tian, S.; Tilden, H.; Tsai, L.; Urich, M.; Vaughn, I.; Vierstra, J.; Vong, S.; Wagner, U.; Wang, H.; Wang, T.; Wang, Y.; Weiss, A.; Whitton, H.; Wildberg, A.; Witt, H.; Won, K.-J.; Xie, M.; Xing, X.; Xu, I.; Xuan, Z.; Ye, Z.; Yen, C.-a.; Yu, P.; Zhang, X.; Zhang, X.; Zhao, J.; Zhou, Y.; Zhu, J.; Zhu, Y.; Ziegler, S.; Beaudet, A. E.; Boyer, L. A.; De Jager, P. L.; Farnham, P. J.; Fisher, S. J.; Haussler, D.; Jones, S. J. M.; Li, W.; Marra, M. A.; McManus, M. T.; Sunyaev, S.; Thomson, J. A.; Tlsty, T. D.; Tsai, L.-H.; Wang, W.; Waterland, R. A.; Zhang, M. Q.; Chadwick, L. H.; Bernstein, B. E.; Costello, J. F.; Ecker, J. R.; Hirst, M.; Meissner, A.; Milosavljevic, A.; Ren, B.; Stamatoyannopoulos, J. A.; Wang, T.; Kellis, M.; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M. J.; Amin, V.; Whitaker, J. W.; Schultz, M. D.; Ward, L. D.; Sarkar, A.; Quon, G.; Sandstrom, R. S.; Eaton, M. L.; Wu, Y.-C.; Pfenning, A. R.; Wang, X.; Claussnitzer, M.; Liu, Y.; Coarfa, C.; Harris, R. A.; Shoresh, N.; Epstein, C. B.; Gjoneska, E.; Leung, D.; Xie, W.; Hawkins, R. D.; Lister, R.; Hong, C.; Gascard, P.; Mungall, A. J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T. K.; Hansen, R. S.; Kaul, R.; Sabo, P. J.; Bansal, M. S.; Carles, A.; Roadmap Epigenomics, C.; Integrative analysis, c.; Integrative analysis, l.; Data, p.; processing, l.; Integrative analysis, c.-l.; Analysis; production, c.; Co-principal, i.; Scientific program, m.; Principal, i., Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317-330.
[35] Park, P. J., ChIP–seq: advantages and challenges of a maturing technology. Nature Reviews Genetics 2009, 10, 669-680.
[36] Cao, Z.; Chen, C.; He, B.; Tan, K.; Lu, C., A microfluidic device for epigenomic profiling using 100 cells. Nat. Methods 2015, 12, 959-62.
[37] Deng, C.; Naler, L. B.; Lu, C., Microfluidic epigenomic mapping technologies for precision medicine. Lab Chip 2019, 19, 2630-2650.
[38] Zhu, B. H.; Hsieh, Y. P.; Murphy, T. W.; Zhang, Q.; Naler, L. B.; Lu, C., MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications. Nature Protocols 2019, 14, 3366-3394.
[39] Sanger, F.; Nicklen, S.; Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977, 74, 5463-7.
[40] Wetterstrand, K. A. The Cost of Sequencing a Human Genome. https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (accessed 2025-06-12).
[41] Gauthier, M. Simulation of polymer translocation through small channels: A molecular dynamics study and a new Monte Carlo approach. 2007.
[42] Hu, T.; Chitnis, N.; Monos, D.; Dinh, A., Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801-811.
[43] Illumina Sequencing platforms. https://www.illumina.com/systems/sequencing-platforms.html (accessed 2025-06-12).
[44] Baum, C. New approaches and concepts to study complex microbial communities. 2021.
[45] ATCC MDA-MB-231. https://www.atcc.org/products/htb-26 (accessed 2024-09-17).
[46] Animal Models for the Study of Human Disease. 2013.
[47] Bejjani, F.; Tolza, C.; Maqbool, M.; Piechaczyk, M.; Jariel-Encontre, I., Mapping of epigenetic marks (H3K4me1, H3K4me3, H3K27ac), p300/CBP, PolII and CTCF on MDA-MB-231 genome. 2021.
[48] Integrated DNA Technologies PrimerQuest Tool. https://sg.idtdna.com/pages/tools/primerquest?returnurl=%2FPrimerquest%2FHome%2FIndex (accessed 2024-08-29).
[49] Takara Bio USA ThruPLEX® DNA-Seq Kit User Manual. https://www.takarabio.com/documents/User%20Manual/ThruPLEX%20DNA/ThruPLEX%20DNA-Seq%20Kit%20User%20Manual_112219.pdf?srsltid=AfmBOoqSQkaXedwAIPfCSfjJb63jSg8qy8Wn9sSp4awIGARPkamgc9fc (accessed 2025-04-01).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98162-
dc.description.abstract乳癌為全球女性最常見的癌症類型,在台灣亦長年位居女性癌症死因之首,其中三陰性乳癌(Triple-negative breast cancer, TNBC)由於缺乏雌激素受體、黃體素受體與HER2表現的侵略性乳癌亞型,治療困難且預後較差。目前臨床主要依賴化學治療,其中以紫杉醇(Paclitaxel)為臨床上最廣泛使用之藥物,然而,其神經毒性的副作用嚴重且容易產生抗藥性。
本研究選用三陰性乳癌細胞株MDA-MB-231進行紫杉醇處理,並透過微流體染色質免疫共沉澱定序技術(MOWChIP-seq)分析給藥前後細胞中與活性增強子相關的H3K27ac組蛋白修飾。MOWChIP技術具備僅需微量樣本及高靈敏度捕捉優勢,能有效減少細胞使用量並提升免疫共沉澱效率。藉由比較紫杉醇處理前後的H3K27ac表觀遺傳圖譜,預期可鑑別出與藥物反應相關之基因調控變化。
本研究旨在探索Paclitaxel於三陰性乳癌細胞中引發的基因調控之變化,揭示其可能的表觀遺傳機制。可作為未來發展低毒性、具標靶性的表觀遺傳治療藥物之參考依據,提升治療三陰性乳癌的成效與安全性。
zh_TW
dc.description.abstractBreast cancer is the most common type of cancer among women worldwide and has long been the leading cause of cancer-related deaths among women in Taiwan. Among its subtypes, triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and HER2 expression, is highly aggressive, difficult to treat, and associated with poor prognosis. Chemotherapy remains the primary clinical treatment, with Paclitaxel being one of the most widely used drugs. However, its application is often limited by severe neurotoxic side effects and the development of drug resistance.
In this study, the TNBC cell line MDA-MB-231 was treated with Paclitaxel, followed by epigenomic profiling using microfluidic oscillatory washing–based chromatin immunoprecipitation followed by sequencing (MOWChIP-seq) to examine changes in H3K27ac histone modifications associated with active enhancers before and after treatment. MOWChIP-seq enables highly sensitive ChIP-seq analysis with minimal cell input, improving enrichment efficiency while reducing sample consumption. By comparing genome-wide H3K27ac profiles before and after Paclitaxel treatment, we aim to identify transcriptional regulatory changes in response to the drug.
This study seeks to explore the gene regulatory alterations induced by Paclitaxel in TNBC cells and to uncover the potential epigenetic mechanisms underlying its action. Our findings may provide a valuable reference for the development of novel epigenetic therapies with lower toxicity and greater specificity, thereby improving the safety and effectiveness of TNBC treatment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:10:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:10:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xii
1. Introduction 1
1.1. Breast Cancer and Triple-Negative Breast Cancer (TNBC) 1
1.2. Paclitaxel 4
1.3. Epigenetics 5
1.4. ChIP and MOWChIP 10
1.5. Sequencing 15
2. Objective 19
3. Experimental 21
3.1. Cell Line 21
3.2. Chemicals 22
3.2.1. Cell Culture 22
3.2.2. IC₅₀ Determination Using the CCK-8 Assay 23
3.2.3. Fabrication of The Microfluidic Device 23
3.2.4. Preparation of Buffers and Reagents 24
3.2.5. Coupling an Antibody to Superparamagnetic Beads 25
3.2.6. Chromatin Preparation by Lysis and MNase Digestion 25
3.2.7. Purification and Concentration of DNA 26
3.2.8. Enrichment Check Using qPCR 26
3.2.9. Library Preparation 26
3.3. Equipment 27
3.4. Methods 29
3.4.1. Cell Thawing 29
3.4.2. Cell Subculture 29
3.4.3. Cell Cryopreservation 31
3.4.4. Determination of the 72 h IC₅₀ Value of Paclitaxel in MDA-MB-231 Cells Using the CCK-8 Assay 32
3.4.5. Fabrication of The Microfluidic Device 33
3.4.6. Preparation of Buffers and Reagents 36
3.4.7. Coupling an Antibody to Superparamagnetic Beads 39
3.4.8. Chromatin Preparation by Lysis and MNase Digestion 40
3.4.9. MOWChIP 44
3.4.10. Oscillatory Washing 47
3.4.11. ChIP DNA isolation 50
3.4.12. Purification and Concentration of DNA 50
3.4.13. Primer Design 52
3.4.14. Enrichment check using qPCR 54
3.4.15. Library preparation 55
4. Results and Discussion 56
4.1. Determination of the 72 h IC₅₀ Value of Paclitaxel in MDA-MB-231 Cells Using the CCK-8 Assay 56
4.2. Primer Design 62
4.3. Enrichment Check Using qPCR 65
4.4. Data Quality Evaluation: Correlation Heatmap and PCA 72
4.5. Genomic Distribution of Differentially Enriched H3K27ac Peaks 76
4.6. Downregulated H3K27ac-Associated Genes Reveal Epigenetics Modulation by Paclitaxel 78
4.7. Upregulated H3K27ac-Associated Genes Reveal Epigenetic Activation by 7-Day Paclitaxel Treatment 86
5. Conclusion 93
6. Future Work 95
References 96
-
dc.language.isoen-
dc.subject三陰性乳癌zh_TW
dc.subject紫杉醇zh_TW
dc.subject表觀遺傳學zh_TW
dc.subject組蛋白修飾zh_TW
dc.subjectH3K27aczh_TW
dc.subject染色質免疫共沉澱zh_TW
dc.subject微流體zh_TW
dc.subject次世代定序zh_TW
dc.subjectNext-generation sequencing (NGS)en
dc.subjectTriple-negative breast cancer (TNBC)en
dc.subjectMicrofluidicsen
dc.subjectPaclitaxelen
dc.subjectEpigeneticsen
dc.subjectH3K27acen
dc.subjectChromatin immunoprecipitation (ChIP)en
dc.subjectMOWChIP-seqen
dc.title利用低樣本高通量 MOWChIP 系統剖析紫杉醇對三陰性乳癌治療中組蛋白修飾的表觀遺傳機制zh_TW
dc.titleProfiling the Epigenetic Mechanisms of Histone Modifications in Triple-Negative Breast Cancer Treatment with Paclitaxel Using a Low-Input, High-Throughput MOWChIP Systemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉禮賢;謝元榜zh_TW
dc.contributor.oralexamcommitteeLi-Hsien Yeh;Yuan-Pang Hsiehen
dc.subject.keyword三陰性乳癌,紫杉醇,表觀遺傳學,組蛋白修飾,H3K27ac,染色質免疫共沉澱,微流體,次世代定序,zh_TW
dc.subject.keywordTriple-negative breast cancer (TNBC),Paclitaxel,Epigenetics,H3K27ac,Chromatin immunoprecipitation (ChIP),MOWChIP-seq,Microfluidics,Next-generation sequencing (NGS),en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202502293-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved