請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 劉子瑄 | zh_TW |
| dc.contributor.author | Tzu-Hsuan Liu | en |
| dc.date.accessioned | 2025-07-30T16:09:48Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | 1. Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A. B. Convolutional Neural Network for Simultaneous Prediction of Several Soil Properties Using Visible/Near-Infrared, Mid-Infrared, and Their Combined Spectra. Geoderma 2019, 352, 251–267.
2. Wan, L.; Ryu, Y.; Dechant, B.; Lee, J.; Zhong, Z.; Feng, H. Improving Retrieval of Leaf Chlorophyll Content from Sentinel-2 and Landsat-7/8 Imagery by Correcting for Canopy Structural Effects. Remote Sens. Environ. 2024, 304, 114048. 3. Yamati, F. R. I.; Bömer, J.; Noack, N.; Linkugel, T.; Paulus, S.; Mahlein, A.-K. Configuration of a Multisensor Platform for Advanced Plant Phenotyping and Disease Detection: Case Study on Cercospora Leaf Spot in Sugar Beet. Smart Agric. Technol. 2025, 10, 100740. 4. Price, S. H.; Suess, K. A.; Williams, C. C.; Bezanson, R.; Khullar, G.; Nelson, E. J.; Wang, B.; Weaver, J. R.; Fujimoto, S.; Kokorev, V.; Greene, J. E.; Brammer, G.; Cutler, S. E.; Dayal, P.; Furtak, L. J.; Labbe, I.; Leja, J.; Miller, T. B.; Nanayakkara, T.; Pan, R.; Whitaker, K. E. Uncover: The Rest-Ultraviolet to Near-Infrared Multiwavelength Structures and Dust Distributions of Submillimeter-Detected Galaxies in A2744. Astrophys. J. 2025, 980, 11. 5. Gai, S. J.; Zhou, C.; Peng, L.; Wu, M. H.; Gao, P. X.; Su, L. J.; Molokeev, M. S.; Zhou, Z.; Xia, M. A Novel Cr3+-Doped Stannate Far Red Phosphor for Plant Lighting: Structure Evolution, Broad-Narrow Spectrum Tuning and Application Prospect. Mater. Today Chem. 2022, 26, 101107. 6. Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Appl. Electron. Mater. 2019, 1, 1046–1053. 7. Fulladosa, E.; Chong, M. W. S.; Parrott, A. J.; Santos, R.; Russell, J.; Nordon, A. Developing Robust Food Composition Models: Strategies for Handling Temperature and Packaging Variations in Dry-Cured Ham Using Near Infrared Spectrometry. Spectrochim. Acta A 2025, 332, 125823. 8. Brito, H. F.; Hölsä, J.; Laamanen, T.; Lastusaari, M.; Malkamäki, M.; Rodrigues, L. C. V. Persistent Luminescence Mechanisms: Human Imagination at Work. Opt. Mater. Express 2012, 2, 371. 9. Xu, J.; Tanabe, S. Persistent Luminescence Instead of Phosphorescence: History, Mechanism, and Perspective. J. Lumin. 2019, 205, 581–620. 10. Gourier, D.; Bessière, A.; Sharma, S. K.; Binet, L.; Viana, B.; Basavaraju, N.; Priolkar, K. R. Origin of the Visible Light Induced Persistent Luminescence of Cr3+-Doped Zinc Gallate. J. Phys. Chem. Solids 2014, 75, 826–837. 11. Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415. 12. He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108, 1245–1330. 13. Chen, G.; Yang, C.; Prasad, P. N. Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles. Acc. Chem. Res. 2013, 46, 1474–1486. 14. Huang, K.; Idris, N. M.; Zhang, Y. Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding. Small 2016, 12, 836–852. 15. Zhong, Y.; Ma, Z.; Zhu, S.; Yue, J.; Zhang, M.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y.; Wang, W.; Huang, N. F.; Luo, J.; Hu, Z.; Dai, H. Boosting the Down-Shifting Luminescence of Rare-Earth Nanocrystals for Biological Imaging Beyond 1500 nm. Nat. Commun. 2017, 8, 737. 16. Zhang, M.; Wang, B.; Cai, Y.; Jin, D.; Zhou, J. Thermally Prolonged NIR-II Luminescence Lifetimes by Cross-Relaxation. Nano Lett. 2024, 16, 4877–4884. 17. Sivakumar, S.; Van Veggel, F. C. J. M.; May, P. S. Near-Infrared (NIR) to Red and Green Up-Conversion Emission from Silica Sol−Gel Thin Films Made with La0.45Yb0.50Er0.05F3 Nanoparticles, Hetero-Looping-Enhanced Energy Transfer (Hetero-Leet): A New Up-Conversion Process. J. Am. Chem. Soc. 2007, 129, 620–625. 18. Brenier, A.; Garapon, C.; Madej, C.; Pédrini, C.; Boulon, G. Dynamics of Looping Mechanisms in Laser Crystals. Opt. Mater. 1994, 4, 51–54. 19. Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J.; Cohen, B. E.; Chan, E. M. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging. ACS Nano 2016, 10, 8423–8433. 20. Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S. S.; Cheng, Z.; Tian, J. First-in-Human Liver-Tumour Surgery Guided by Multispectral Fluorescence Imaging in the Visible and Near-Infrared-I/II Windows. Nat. Biomed. Eng. 2019, 4, 259–271. 21. Yang, J.; He, S.; Hu, Z.; Zhang, Z.; Cao, C.; Cheng, Z.; Fang, C.; Tian, J. In Vivo Multifunctional Fluorescence Imaging Using Liposome-Coated Lanthanide Nanoparticles in Near-Infrared-II/IIa/IIb Windows. Nano Today 2021, 38, 101120. 22. Ma, Z.; Wang, F.; Wang, W.; Zhong, Y.; Dai, H. Deep Learning for in Vivo Near-Infrared Imaging. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2021446118. 23. Zhang, Z.; Du, Y.; Shi, X.; Wang, K.; Qu, Q.; Liang, Q.; Ma, X.; He, K.; Chi, C.; Tang, J.; Liu, B.; Ji, J.; Wang, J.; Dong, J.; Hu, Z.; Tian, J. NIR-II Light in Clinical Oncology: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2024, 21, 449–467. 24. Dai, H.; Wang, X.; Shao, J.; Wang, W.; Mou, X.; Dong, X. NIR‐II Organic Nanotheranostics for Precision Oncotherapy. Small 2021, 17, 2102646. 25. Li, X.; Lovell, J. F.; Yoon, J.; Chen, X. Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. 26. Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. 27. Chen, Q.; Chen, J.; Yang, Z.; Zhang, L.; Dong, Z.; Liu, Z. NIR-II Light Activated Photodynamic Therapy with Protein-Capped Gold Nanoclusters. Nano Res. 2018, 11, 5657–5669. 28. Feng, Z.; Yu, X.; Jiang, M.; Zhu, L.; Zhang, Y.; Yang, W.; Xi, W.; Li, G.; Qian, J. Excretable Ir-820 for in Vivo NIR-II Fluorescence Cerebrovascular Imaging and Photothermal Therapy of Subcutaneous Tumor. Theranostics 2019, 9, 5706–5719. 29. Li, Y.; Fan, X.; Li, Y.; Zhu, L.; Chen, R.; Zhang, Y.; Ni, H.; Xia, Q.; Feng, Z.; Tang, B. Z.; Qian, J.; Lin, H. Biologically Excretable AIE Nanoparticles Wear Tumor Cell-Derived “Exosome Caps” for Efficient NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Nano Today 2021, 41, 101333. 30. Xue, X.; Li, J.; Chen, T.; Cui, M.; Liang, H.; Zhang, Y.; Xue, M.; Xiao, H.; Ge, J.; Wang, P. Molecularly Engineered NIR-II Emitting Carbon Dots Assemblies for Unprecedented High-Resolution Angiography and Synergistic Photodynamic/Photothermal Tumor Therapy. Chem. Eng. J. 2025, 505, 159356. 31. He, X.; Luo, Y.; Li, Y.; Pan, Y.; Kwok, R. T. K.; He, L.; Duan, X.; Zhang, P.; Wu, A.; Tang, B. Z.; Li, J. D‐Type Neuropeptide Decorated Aiegen/Renp Hybrid Nanoprobes with Light‐Driven ROS Generation Ability for NIR‐II Fluorescence Imaging‐Guided through‐Skull Photodynamic Therapy of Gliomas. Aggregate 2024, 5, e396. 32. Jiang, Y.; Upputuri, P. K.; Xie, C.; Lyu, Y.; Zhang, L.; Xiong, Q.; Pramanik, M.; Pu, K. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window. Nano Lett. 2017, 17, 4964–4969. 33. Ntziachristos, V. Going Deeper than Microscopy: The Optical Imaging Frontier in Biology. Nat. Methods 2010, 7, 603–614. 34. Levi, J.; Kothapalli, S. R.; Ma, T.-J.; Hartman, K.; Khuri-Yakub, B. T.; Gambhir, S. S. Design, Synthesis, and Imaging of an Activatable Photoacoustic Probe. J. Am. Chem. Soc. 2010, 132, 11264–11269. 35. Kenry; Duan, Y.; Liu, B. Recent Advances of Optical Imaging in the Second Near-Infrared Window. Adv. Mater. 2018, 30, 1802394. 36. Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm. Angew. Chem. Int. Ed. 2013, 52, 13002–13006. 37. Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z.; Zhang, Z.; Zhu, S.; Wang, J.; Lozano, A. X.; Fan, Q.; Chew, L.; Zhu, M.; Cheng, K.; Hong, X.; Dai, H.; Cheng, Z. A High Quantum Yield Molecule-Protein Complex Fluorophore for Near-Infrared II Imaging. Nat. Commun. 2017, 8, 15269. 38. Heilmeier, G. H.; Zanoni, L. A.; Barton, L. A. Dynamic Scattering: A New Electrooptic Effect in Certain Classes of Nematic Liquid Crystals. Proc. IEEE 1968, 56, 1162–1171. 39. Schadt, M.; Helfrich, W. Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal. Appl. Phys. Lett. 1971, 18, 127–128. 40. Schadt, M. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials. Jpn. J. Appl. Phys. 2009, 48, 03B001. 41. Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: United States, 2014. 42. Templier, F. Gan‐Based Emissive Microdisplays: A Very Promising Technology for Compact, Ultra‐High Brightness Display Systems. J. Soc. Inf. Disp. 2016, 24, 669–675. 43. Huang, Y.; Tan, G.; Gou, F.; Li, M. C.; Lee, S. L.; Wu, S. T. Prospects and Challenges of Mini‐LED and Micro‐LED Displays. J. Soc. Inf. Disp. 2019, 27, 387–401. 44. Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. 45. Tan, G.; Huang, Y.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. High Dynamic Range Liquid Crystal Displays with a Mini-LED Backlight. Opt. Express 2018, 26, 16572–16584. 46. Tang, C. W.; VanSlyke, S. A. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913–915. 47. Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-K.; Chiu, T.-L.; Lin, C.-F. Blue Organic Light-Emitting Diodes: Current Status, Challenges, and Future Outlook. J. Mater. Chem. C 2019, 7, 5874–5888. 48. Tsujimura, T. OLED Display Fundamentals and Applications; John Wiley & Sons: United States, 2017. 49. Tull, B. R.; Basaran, Z.; Gidony, D.; Limanov, A. B.; Im, J. S.; Kymissis, I.; Lee, V. W. High Brightness, Emissive Microdisplay by Integration of III‐V LEDs with Thin Film Silicon Transistors. Dig. Tech. Pap. 2015, 46, 375–377. 50. Lee, V. W.; Twu, N.; Kymissis, I. Micro‐LED Technologies and Applications. Inf. Disp. 2016, 32, 16–23. 51. Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced Liquid Crystal Devices for Augmented Reality and Virtual Reality Displays: Principles and Applications. Light Sci. Appl. 2022, 11, 161. 52. Wei, Y.; Cheng, Z.; Lin, J. An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350. 53. Bispo-Jr, A. G.; Saraiva, L. F.; Lima, S. A. M.; Pires, A. M.; Davolos, M. R. Recent Prospects on Phosphor-Converted LEDs for Lighting, Displays, Phototherapy, and Indoor Farming. J. Lumin. 2021, 237, 118167. 54. Zhao, M.; Zhang, Q.; Xia, Z. Narrow-Band Emitters in LED Backlights for Liquid-Crystal Displays. Mater. Today 2020, 40, 246–265. 55. Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor Handbook; CRC Press: United States, 2018. 56. Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275–299. 57. Huang, L.; Liu, Y.; Yu, J.; Zhu, Y.; Pan, F.; Xuan, T.; Brik, M. G.; Wang, C.; Wang, J. Highly Stable K2SiF6:Mn4+@K2SiF6 Composite Phosphor with Narrow Red Emission for White LEDs. ACS Appl. Mater. Interfaces 2018, 10, 18082–18092. 58. Du, J.; Liu, S.; Song, Z.; Liu, Q. All-Inorganic Green Synthesis of Small-Sized and Efficient K2SiF6:Mn4+ Phosphor for Mini-LED Displays. ACS Appl. Mater. Interfaces 2023, 15, 53738–53745. 59. Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives. Light Sci. Appl. 2020, 9, 105. 60. Lee, E.; Tangirala, R.; Smith, A.; Carpenter, A.; Hotz, C.; Kim, H.; Yurek, J.; Miki, T.; Yoshihara, S.; Kizaki, T. Quantum Dot Conversion Layers through Inkjet Printing. Dig. Tech. Pap. 2018, 49, 525–527. 61. Gou, F.; Hsiang, E.-L.; Tan, G.; Lan, Y.-F.; Tsai, C.-Y.; Wu, S.-T. Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array. Crystals 2019, 9, 39. 62. De Guzman, G. N. A.; Fang, M.-H.; Liang, C.-H.; Bao, Z.; Hu, S.-F.; Liu, R. S. Near-Infrared Phosphors and Their Full Potential: A Review on Practical Applications and Future Perspectives. J. Lumin. 2020, 219, 116944. 63. Rajendran, V.; Chang, C. Y.; Huang, M. H.; Chen, K. C.; Huang, W. T.; Kamiński, M.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Lu, K. M.; Wei, D. H.; Chang, H.; Liu, R. S. Chromium Cluster Luminescence: Advancing Near‐Infrared Light‐Emitting Diode Design for Next‐Generation Broadband Compact Light Sources. Adv. Opt. Mater. 2024, 12, 2302645. 64. Chang, C.-Y.; Huang, M.-H.; Chen, K.-C.; Huang, W.-T.; Kamiński, M.; Majewska, N.; Klimczuk, T.; Chen, J.-H.; Cherng, D.-H.; Lu, K.-M.; Pang, W. K.; Peterson, V. K.; Mahlik, S.; Leniec, G.; Liu, R. S. Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer. Chem. Mater. 2024, 36, 3941–3948. 65. Wang, C.; Zhang, Y.; Han, X.; Hu, D.; He, D.; Wang, X.; Jiao, H. Energy Transfer Enhanced Broadband near-Infrared Phosphors: Cr3+/Ni2+ Activated ZnGa2O4–Zn2SnO4 Solid Solutions for the Second NIR Window Imaging. J. Mater. Chem. C 2021, 9, 4583–4590. 66. Chi, N. T. K.; Quang, N. V.; Tuan, N. T.; Kien, N. D. T.; Trung, D. Q.; Huy, P. T.; Tam, P. D.; Nguyen, D. H. Deep Red Emitting MgAl2O4:Cr3+ Phosphor for Solid State Lighting. J. Electron. Mater. 2019, 48, 5891–5899. 67. Brik, M. G.; Papan, J.; Jovanović, D. J.; Dramićanin, M. D. Luminescence of Cr3+ Ions in ZnAl2O4 and MgAl2O4 Spinels: Correlation between Experimental Spectroscopic Studies and Crystal Field Calculations. J. Lumin. 2016, 177, 145–151. 68. Safeera, T. A.; Johny, J.; Shaji, S.; Nien, Y. T.; Anila, E. I. Impact of Activator Incorporation on Red Emitting Rods of ZnGa2O4:Cr3+ Phosphor. Mater. Sci. Eng. C 2019, 94, 1037–1043. 69. Wang, L.; Wang, X.; Kohsei, T.; Yoshimura, K.-i.; Izumi, M.; Hirosaki, N.; Xie, R.-J. Highly Efficient Narrow-Band Green and Red Phosphors Enabling Wider Color-Gamut LED Backlight for More Brilliant Displays. Opt. Express 2015, 23, 28707–28717. 70. Liu, B.-M.; Guo, X.-X.; Cao, L.-Y.; Huang, L.; Zou, R.; Zhou, Z.; Wang, J. A High-Efficiency Blue-LED-Excitable NIR-II-Emitting MgO:Cr3+,Ni2+ Phosphor for Future Broadband Light Source toward Multifunctional NIR Spectroscopy Applications. Chem. Eng. J. 2023, 452, 139313. 71. Fang, M.-H.; Bao, Z.; Huang, W.-T.; Liu, R. S. Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chem. Rev. 2022, 122, 11474–11513. 72. Zhou, J.; Leano Jr, J. L.; Liu, Z.; Jin, D.; Wong, K. L.; Liu, R. S.; Bünzli, J. C. G. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2018, 14, 1801882. 73. Li, X.; Chen, H.; Su, Z.; Zhao, Q.; Wang, Y.; Li, N.; Li, S. Brightness Strategies toward NIR-II Emissive Conjugated Materials: Molecular Design, Application, and Future Prospects. ACS Appl. Bio Mater. 2024, 7, 8019–8039. 74. Shen, H.; Sun, F.; Zhu, X.; Zhang, J.; Ou, X.; Zhang, J.; Xu, C.; Sung, H. H. Y.; Williams, I. D.; Chen, S.; Kwok, R. T. K.; Lam, J. W. Y.; Sun, J.; Zhang, F.; Tang, B. Z. Rational Design of NIR-II Aiegens with Ultrahigh Quantum Yields for Photo- and Chemiluminescence Imaging. J. Am. Chem. Soc. 2022, 144, 15391–15402. 75. Gao, Y.-F.; Zou, R.; Chen, G.-F.; Liu, B.-M.; Zhang, Y.; Jiao, J.; Wong, K.-L.; Wang, J. Large-Pore Mesoporous-Silica-Assisted Synthesis of High-Performance ZnGa2O4:Cr3+/Sn4+@MSNs Multifunctional Nanoplatform with Optimized Optical Probe Mass Ratio and Superior Residual Pore Volume for Improved Bioimaging and Drug Delivery. Chem. Eng. J. 2021, 420, 130021. 76. Srivastava, B. B.; Gupta, S. K.; Mao, Y. Single Red Emission from Upconverting ZnGa2O4:Yb,Er Nanoparticles Co-Doped by Cr3+. Mater. Sci. Eng. C 2020, 8, 6370–6379. 77. Xi, X.; Feng, W. Fine-Tuning of Composition in Multi-Layered Core-Shell Rare Earth Nanoparticles for the Enhanced NIR-II Emission. Mater. Res. Bull. 2024, 178, 112889. 78. Iglesias-Mejuto, A.; Lamy-Mendes, A.; Pina, J.; Costa, B. F. O.; García-González, C. A.; Durães, L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods. Gels 2024, 10, 13. 79. Choi, J.-S.; Kim, S.; Yoo, D.; Shin, T.-H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Distance-Dependent Magnetic Resonance Tuning as a Versatile MRI Sensing Platform for Biological Targets. Nat. Mater 2017, 16, 537–542. 80. Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO2 as a Tumor-Microenvironment-Responsive Biodegradable Nano-Platform for Combination Therapy Favoring Antitumor Immune Responses. Nat. Commun. 2017, 8. 81. Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A. In Vivo Imaging of Tumors with Protease-Activated Near-Infrared Fluorescent Probes. Nat. Biotechnol. 1999, 17, 375–378. 82. Shen, Z.; Song, J.; Zhou, Z.; Yung, B. C.; Aronova, M. A.; Li, Y.; Dai, Y.; Fan, W.; Liu, Y.; Li, Z.; Ruan, H.; Leapman, R. D.; Lin, L.; Niu, G.; Chen, X.; Wu, A. Dotted Core–Shell Nanoparticles for T1-Weighted MRI of Tumors. Adv. Mater. 2018, 30, 1803163. 83. Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-Red to Near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging. Chem. Soc. Rev. 2013, 42, 622–661. 84. Lyu, Y.; Zhen, X.; Miao, Y.; Pu, K. Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. ACS Nano 2017, 11, 358–367. 85. Roberts, D. W.; Olson, J. Fluorescein Guidance in Glioblastoma Resection. New Engl. J. Med. 2017, 376, e36. 86. Neira, J. A.; Ung, T. H.; Sims, J. S.; Malone, H. R.; Chow, D. S.; Samanamud, J. L.; Zanazzi, G. J.; Guo, X.; Bowden, S. G.; Zhao, B.; Sheth, S. A.; McKhann, G. M.; Sisti, M. B.; Canoll, P.; D'Amico, R. S.; Bruce, J. N. Aggressive Resection at the Infiltrative Margins of Glioblastoma Facilitated by Intraoperative Fluorescein Guidance. J. Neurosurg. 2017, 127, 111–122. 87. Qu, J.; Golovynska, I.; Liu, J.; Qu, J.; Golovynskyi, S. Optical Transparency Windows in Near‐Infrared and Short‐Wave Infrared for the Skin, Skull, and Brain: Fluorescence Bioimaging Using PbS Quantum Dots. J. Biophotonics 2024, 17, e202400171. 88. Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical Properties of Human Skin, Subcutaneous and Mucous Tissues in the Wavelength Range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555. 89. Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V. Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. 90. Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Multifunctional in Vivo Vascular Imaging Using Near-Infrared II Fluorescence. Nat. Med. 2012, 18, 1841–1846. 91. Liu, R.; Qiu, Y.; Wu, F.; Duan, S.; Suo, Y.; Chang, B.; Ren, Y.; Tian, M.; Liu, H.; Cheng, Z. Dual‐Wavelength Comparative Imaging Based on a Novel NIR‐II/IIb Emissive Rare Earth‐Doped Nanoparticle. Adv. Opt. Mater. 2023, 11, 2300378. 92. Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. In vivo Real-Time Visualization of Tissue Blood Flow and Angiogenesis Using Ag2S Quantum Dots in the NIR-II Window. Biomaterials 2014, 35, 393–400. 93. Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. 94. Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng 2017, 1, 10. 95. Diao, S.; Hong, G.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. Biological Imaging without Autofluorescence in the Second Near-Infrared Region. Nano Res. 2015, 8, 3027–3034. 96. Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Recent Advances in Near-Infrared Emitting Lanthanide-Doped Nanoconstructs: Mechanism, Design and Application for Bioimaging. Coord. Chem. Rev. 2019, 381, 104–134. 97. Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In Vivo Three-Photon Microscopy of Subcortical Structures within an Intact Mouse Brain. Nat. Photonics 2013, 7, 205–209. 98. Palczewska, G.; Dong, Z.; Golczak, M.; Hunter, J. J.; Williams, D. R.; Alexander, N. S.; Palczewski, K. Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium through the Pupil of the Eye. Nat. Med. 2014, 20, 785–789. 99. Tanzid, M.; Hogan, N. J.; Sobhani, A.; Robatjazi, H.; Pediredla, A. K.; Samaniego, A.; Veeraraghavan, A.; Halas, N. J. Absorption-Induced Image Resolution Enhancement in Scattering Media. ACS Photonics 2016, 3, 1787–1793. 100. Carr, J. A.; Aellen, M.; Franke, D.; So, P. T. C.; Bruns, O. T.; Bawendi, M. G. Absorption by Water Increases Fluorescence Image Contrast of Biological Tissue in the Shortwave Infrared. Proc. Natl. Acad. Sci. 2018, 115, 9080–9085. 101. Wang, L.; Jacques, S. L.; Zheng, L. Mcml—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues. Comput. Methods Programs Biomed. 1995, 47, 131–146. 102. Feng, Z.; Tang, T.; Wu, T.; Yu, X.; Zhang, Y.; Wang, M.; Zheng, J.; Ying, Y.; Chen, S.; Zhou, J.; Fan, X.; Zhang, D.; Li, S.; Zhang, M.; Qian, J. Perfecting and Extending the Near-Infrared Imaging Window. Light Sci. Appl. 2021, 10, 197. 103. Kou, L.; Labrie, D.; Chylek, P. Refractive Indices of Water and Ice in the 0.65- to 2.5-μm Spectral Range. Appl. Opt. 1993, 32, 3531. 104. Hale, G. M.; Querry, M. R. Optical Constants of Water in the 200-nm to 200-mm Wavelength Region. Appl. Opt. 1973, 12, 555. 105. Bashkatov, A. N. Optical Properties of the Subcutaneous Adipose Tissue in the Spectral Range 400–2500 nm. Opt. Spectrosc. 2005, 99, 836. 106. Mei, S.; Zhou, J.; Sun, H. T.; Cai, Y.; Sun, L. D.; Jin, D.; Yan, C. H. Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals. Adv. Sci. 2021, 8, 2003325. 107. Liu, Y.; Teng, L.; Yin, B.; Meng, H.; Yin, X.; Huan, S.; Song, G.; Zhang, X.-B. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem. Rev. 2022, 122, 6850–6918. 108. Zeng, L.; Ma, G.; Lin, J.; Huang, P. Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. Small 2018, 14, 1800782. 109. Maalej, N. M.; Qurashi, A.; Assadi, A. A.; Maalej, R.; Shaikh, M. N.; Ilyas, M.; Gondal, M. A. Synthesis of Gd2O3:Eu Nanoplatelets for MRI and Fluorescence Imaging. Nanoscale Res. Lett. 2015, 10, 1–10. 110. Wang, Q.; Shangguan, H.; Yu, H.; Rong, X.; Zhou, B.; Tang, Z.; Li, C.; Liu, S.; Lu, Y.; Xu, J. Fluorinated Hafnium and Zirconium Coenable the Tunable Biodegradability of Core–Multishell Heterogeneous Nanocrystals for Bioimaging. Nano Lett. 2024, 24, 2876–2884. 111. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. A Small-Molecule Dye for NIR-II Imaging. Nat. Mater. 2016, 15, 235–242. 112. Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 Nm. Nanoscale Horiz. 2016, 1, 168–184. 113. Yang, Q.; Ma, Z.; Wang, H.; Zhou, B.; Zhu, S.; Zhong, Y.; Wang, J.; Wan, H.; Antaris, A.; Ma, R.; Zhang, X.; Yang, J.; Zhang, X.; Sun, H.; Liu, W.; Liang, Y.; Dai, H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR‐II Window. Adv. Mater. 2017, 29, 1605497. 114. Tian, F.; Li, S.; Yang, X.; Fan, K.; Zhou, M.; Gao, D.; Hu, D.; Ju, S. Molecular Etching‐Derived High‐Brightness NIR‐II Gold Nanoclusters for High‐Resolution Bioimaging and Photothermal Therapy. Adv. Funct. Mater. 2025, 2418867. 115. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A Route to Brightly Fluorescent Carbon Nanotubes for Near-Infrared Imaging in Mice. Nat. Nanotechnol. 2009, 4, 773–780. 116. Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano 2012, 6, 3695–3702. 117. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-Earth-Doped Biological Composites as in Vivo Shortwave Infrared Reporters. Chem. Commun. 2013, 4, 2199. 118. Jiang, X.; Cao, C.; Feng, W.; Li, F. Nd3+-Doped LiYF4 Nanocrystals for Bio-Imaging in the Second Near-Infrared Window. J. Mater. Chem. B 2016, 4, 87–95. 119. Wu, Y.; Yu, H.; Li, C.; Liu, L.; Zhang, Y.; Gong, J.; Sha, R.; Feng, L.; Yan, H.; Jiang, G.; Wang, J.; Tang, B. Z. Spacer Twisting Strategy to Realize Ultrabright Near-Infrared II Polymer Nanoparticles for Fluorescence Imaging-Guided Tumor Phototheranostics. ACS Nano 2024, 18, 28178–28188. 120. Zhuang, J.; Wang, B.; Chen, H.; Zhang, K.; Li, N.; Zhao, N.; Tang, B. Z. Efficient NIR-II Type-I AIE Photosensitizer for Mitochondria-Targeted Photodynamic Therapy through Synergistic Apoptosis-Ferroptosis. ACS Nano 2023, 17, 9110–9125. 121. Wan, Y.; Gao, Y.; Wei, W.-C.; Lee, K.-W.; Tan, J.-H.; Chen, C.-Y.; Chen, H.; Li, S.; Wong, K.-T.; Lee, C.-S. Facilely Achieving Near-Infrared-II J-Aggregates through Molecular Bending on a Donor-Acceptor Fluorophore for High-Performance Tumor Phototheranostics. ACS Nano 2024, 18, 27949–27961. 122. Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem. Int. Ed. 2012, 51, 9818–9821. 123. Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.-S.; Zhang, W.; Han, X. A Graphene Quantum Dot Photodynamic Therapy Agent with High Singlet Oxygen Generation. Nat. Commun. 2014, 5, 4596. 124. Jia, Q.; Ge, J.; Liu, W.; Zheng, X.; Chen, S.; Wen, Y.; Zhang, H.; Wang, P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Adv. Mater. 2018, 30, 1706090. 125. Geng, B.; Hu, J.; Li, Y.; Feng, S.; Pan, D.; Feng, L.; Shen, L. Near-Infrared Phosphorescent Carbon Dots for Sonodynamic Precision Tumor Therapy. Nat. Commun. 2022, 13, 5735. 126. Zhang, T.; Wang, B.; Cheng, Q.; Wang, Q.; Zhou, Q.; Li, L.; Qu, S.; Sun, H.; Deng, C.; Tang, Z. Polaron Engineering Promotes NIR-II Absorption of Carbon Quantum Dots for Bioimaging and Cancer Therapy. Sci. Adv. 2024, 10, eadn7896. 127. Han, T.; Wang, Y.; Ma, S.; Li, M.; Zhu, N.; Tao, S.; Xu, J.; Sun, B.; Jia, Y.; Zhang, Y.; Zhu, S.; Yang, B. Near‐Infrared Carbonized Polymer Dots for NIR‐II Bioimaging. Adv. Sci. 2022, 9, 2203474. 128. Guo, J.; Lu, Y.; Xie, A. Q.; Li, G.; Liang, Z. B.; Wang, C. F.; Yang, X.; Chen, S. Yellow‐Emissive Carbon Dots with High Solid‐State Photoluminescence. Adv. Funct. Mater. 2022, 32, 2110393. 129. Moore, B. F.; Kumar, G. A.; Tan, M.-C.; Kohl, J.; Riman, R. E.; Brik, M. G.; Emge, T. J.; Brennan, J. G. Lanthanide Clusters with Chalcogen Encapsulated Ln: NIR Emission from Nanoscale NdSeX. J. Am. Chem. Soc. 2011, 133, 373–378. 130. Petoud, S.; Cohen, S. M.; Bünzli, J.-C. G.; Raymond, K. N. Stable Lanthanide Luminescence Agents Highly Emissive in Aqueous Solution: Multidentate 2-Hydroxyisophthalamide Complexes of Sm3+, Eu3+, Tb3+, Dy3+. J. Am. Chem. Soc. 2003, 125, 13324–13325. 131. Samanta, T.; Praveen, A. E.; Mahalingam, V. Host Sensitized Intense Infrared Emissions from Ln3+ Doped GdVO4 Nanocrystals: Ranging from 950 nm to 2000 nm. J. Mater. Chem. C 2018, 6, 4878–4886. 132. Zhang, J.; Badger, P. D.; Geib, S. J.; Petoud, S. Sensitization of Near-Infrared Emitting Lanthanide Cations in Solution by Tropolonate Ligands. Angew. Chem. Int. Ed. 2005, 44, 2508–2512. 133. Uh, H.; Petoud, S. Novel Antennae for the Sensitization of Near Infrared Luminescent Lanthanide Cations. C. R. Chim. 2010, 13, 668–680. 134. Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles. Nat. Mater. 2011, 10, 968–973. 135. Suo, H.; Zhao, X.; Zhang, Z.; Shi, R.; Wu, Y.; Xiang, J.; Guo, C. Local Symmetric Distortion Boosted Photon Up-Conversion and Thermometric Sensitivity in Lanthanum Oxide Nanospheres. Nanoscale 2018, 10, 9245–9251. 136. Liu, G.; Jacquier, B. Spectroscopic Properties of Rare Earths in Optical Materials; Springer Science & Business Media: Berlin, Germany, 2006. 137. Hänninen, P.; Härmä, H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects; Springer Science & Business Media: Berlin, Germany, 2011. 138. Yin, A.; Zhang, Y.; Sun, L.; Yan, C. Colloidal Synthesis and Blue Based Multicolor Upconversion Emissions of Size and Composition Controlled Monodisperse Hexagonal NaYF4:Yb,Tm Nanocrystals. Nanoscale 2010, 2, 953. 139. Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors. Nano Lett. 2008, 8, 3834–3838. 140. Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence. ACS Nano 2010, 4, 3163–3168. 141. Chen, G.; Ohulchanskyy, T. Y.; Law, W. C.; Ågren, H.; Prasad, P. N. Monodisperse NaYbF4:Tm3+/NaGdF4 Core/Shell Nanocrystals with Near-Infrared to Near-Infrared Upconversion Photoluminescence and Magnetic Resonance Properties. Nanoscale 2011, 3, 2003. 142. Jalani, G.; Naccache, R.; Rosenzweig, D. H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. J. Am. Chem. Soc. 2016, 138, 1078–1083. 143. Wang, R.; Li, X.; Zhou, L.; Zhang, F. Epitaxial Seeded Growth of Rare‐Earth Nanocrystals with Efficient 800 nm Near‐Infrared to 1525 nm Short‐Wavelength Infrared Downconversion Photoluminescence for in Vivo Bioimaging. Angew. Chem. Int. Ed. 2014, 53, 12086–12090. 144. Roy, T. L.; Forbes, T. L.; Dueck, A. D.; Wright, G. A. MRI for Peripheral Artery Disease: Introductory Physics for Vascular Physicians. Vasc. Med. 2018, 23, 153–162. 145. Farrall, A. J. Magnetic Resonance Imaging. Pract. Neurol.2006, 6, 8. 146. Currie, S.; Hoggard, N.; Craven, I. J.; Hadjivassiliou, M.; Wilkinson, I. D. Understanding MRI: Basic MR Physics for Physicians. Postgrad. Med. J. 2012, 89, 209–223. 147. Young, I. R.; Clarke, G. J.; Baffles, D. R.; Pennock, J. M.; Doyle, F. H.; Bydder, G. M. Enhancement of Relaxation Rate with Paramagnetic Contrast Agents in NMR Imaging. J. Comput. Assist. Tomogr. 1981, 5, 543–547. 148. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. 149. Thunus, L.; Lejeune, R. Overview of Transition Metal and Lanthanide Complexes as Diagnostic Tools. Coord. Chem. Rev. 1999, 184, 125–155. 150. Li, K. C. P.; Tart, R. P.; Fitzsimmons, J. R.; Storm, B. L.; Mao, J.; Rolfes, R. J. Barium Sulfate Suspension as a Negative Oral MRI Contrast Agent: In Vitro and Human Optimization Studies. Magn. Reson. Imaging 1991, 9, 141–150. 151. Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 559–565. 152. Bloembergen, N. Proton Relaxation Times in Paramagnetic Solutions. J. Chem. Phys. 1957, 27, 572–573. 153. Lauffer, R. B. Paramagnetic Metal Complexes as Water Proton Relaxation Agents for NMR Imaging: Theory and Design. Chem. Rev. 1987, 87, 901–927. 154. Sijens, P. E.; Van Den Bent, M. J.; Nowak, P. J. C. M.; Van Dijk, P.; Oudkerk, M. 1H Chemical Shift Imaging Reveals Loss of Brain Tumor Choline Signal after Administration of Gd‐Contrast. Magn. Reson. Med. 1997, 37, 222–225. 155. Jacobs, K. E.; Behera, D.; Rosenberg, J.; Gold, G.; Moseley, M.; Yeomans, D.; Biswal, S. Oral Manganese as an MRI Contrast Agent for the Detection of Nociceptive Activity. NMR Biomed. 2012, 25, 563–569. 156. Xiao, Y.-D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.-S.; Zhou, S.-K. MRI Contrast Agents: Classification and Application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. 157. Elster, A. D.; Sobol, W. T.; Hinson, W. H. Pseudolayering of Gd-DTPA in the Urinary Bladder. Radiology 1990, 174, 379–381. 158. Feinle, A.; Elsaesser, M. S.; Hüsing, N. Sol-Gel Synthesis of Monolithic Materials with Hierarchical Porosity. Chem. Soc. Rev. 2016, 45, 3377–3399. 159. Liao, Y.; Xu, Y.; Chan, Y. Semiconductor Nanocrystals in Sol–Gel Derived Matrices. Phys. Chem. Chem. Phys. 2013, 15, 13694. 160. Owens, G. J.; Singh, R. K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J. C. Sol-Gel Based Materials for Biomedical Applications. Prog. Mater Sci. 2016, 77, 1–79. 161. Li, B.; Wang, X.; Yan, M.; Li, L. Preparation and Characterization of Nano-TiO2 Powder. Mater. Chem. Phys. 2003, 78, 184–188. 162. Verma, R.; Mantri, B.; Kumar Srivastava, A. Shape Control Synthesis, Characterizations, Mechanisms and Optical Properties of Large Scaled Metal Oxide Nanostructures of ZnO and TiO2. Adv. Mater. Lett. 2015, 6, 324–333. 163. Shinde, S. S.; Bhosale, C. H.; Rajpure, K. Y. Photoelectrochemical Properties of Highly Mobilized Li-Doped ZnO Thin Films. J. Photochem. Photobiol. B. 2013, 120, 1–9. 164. Shinde, S. S.; Shinde, P. S.; Bhosale, C. H.; Rajpure, K. Y. Zinc Oxide Mediated Heterogeneous Photocatalytic Degradation of Organic Species under Solar Radiation. J. Photochem. Photobiol. B 2011, 104, 425–433. 165. Verma, R.; Gangwar, J.; Srivastava, A. K. Multiphase TiO2 Nanostructures: A Review of Efficient Synthesis, Growth Mechanism, Probing Capabilities, and Applications in Bio-Safety and Health. RSC Adv. 2017, 7, 44199–44224. 166. Singh, I.; Birajdar, B. Synthesis, Characterization and Photocatalytic Activity of Mesoporous Na-Doped TiO2 Nano-Powder Prepared via a Solvent-Controlled Non-Aqueous Sol-Gel Route. RSC Adv. 2017, 7, 54053–54062. 167. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007, 316, 732–735. 168. Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol-Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. 169. Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via Sol-Gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31, 3729–3749. 170. Shinde, S. S.; Patil, P. S.; Gaikwad, R. S.; Mane, R. S.; Pawar, B. N.; Rajpure, K. Y. Influences in High Quality Zinc Oxide Films and Their Photoelectrochemical Performance. J. Alloys Compd. 2010, 503, 416–421. 171. Khan, M. D.; Ahn, J. W.; Nam, G. Environmental Benign Synthesis, Characterization and Mechanism Studies of Green Calcium Hydroxide Nano-Plates Derived from Waste Oyster Shells. J. Environ. Manage. 2018, 223, 947–951. 172. Shinde, S. S.; Rajpure, K. Y. Fast Response Ultraviolet Ga-Doped ZnO Based Photoconductive Detector. Mater. Res. Bull. 2011, 46, 1734–1737. 173. Ullah, R.; Dutta, J. Photocatalytic Degradation of Organic Dyes with Manganese-Doped ZnO Nanoparticles. J. Hazard. Mater. 2008, 156, 194–200. 174. Suhasinee Behera, P.; Bhattacharyya, S.; Sarkar, R. Effect of Citrate to Nitrate Ratio on the Sol-Gel Synthesis of Nanosized α-Al2O3 Powder. Ceram. Int. 2017, 43, 15221–15226. 175. Li, J.; Pan, Y.; Xiang, C.; Ge, Q.; Guo, J. Low-Temperature Synthesis of Ultrafine α-Al2O3 Powder by a Simple Aqueous Sol-Gel Process. Ceram. Int. 2006, 32, 587–591. 176. Pechini, M. P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor; U.S. Patent 3,330,697, July 11, 1967. 177. Lin, J.; Yu, M.; Lin, C.; Liu, X. Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol-Gel Process: Synthesis and Characteristics. J. Phys. Chem. C 2007, 111, 5835–5845. 178. Hayat, K.; Gondal, M.; Khaled, M. M.; Ahmed, S.; Shemsi, A. M. Nano Zno Synthesis by Modified Sol Gel Method and Its Application in Heterogeneous Photocatalytic Removal of Phenol from Water. Appl. Catal. A Gen. 2011, 393, 122–129. 179. Lukić, S. R.; Petrović, D. M.; Dramićanin, M.; Mitrić, M.; Ðačanin, L. Optical and Structural Properties of Zn2SiO4:Mn2+ Green Phosphor Nanoparticles Obtained by a Polymer-Assisted Sol-Gel Method. Scripta Mater. 2008, 58, 655–658. 180. Kandhasamy, S.; Pandey, A.; Minakshi, M. Polyvinylpyrrolidone Assisted Sol-Gel Route LiCo1/3Mn1/3Ni1/3PO4 Composite Cathode for Aqueous Rechargeable Battery. Electrochim. Acta 2012, 60, 170–176. 181. Guth, S.; Hüser, S.; Roth, A.; Degen, G.; Diel, P.; Edlund, K.; Eisenbrand, G.; Engel, K.-H.; Epe, B.; Grune, T.; Heinz, V.; Henle, T.; Humpf, H.-U.; Jäger, H.; Joost, H.-G.; Kulling, S. E.; Lampen, A.; Mally, A.; Marchan, R.; Marko, D.; Mühle, E.; Nitsche, M. A.; Röhrdanz, E.; Stadler, R.; Van Thriel, C.; Vieths, S.; Vogel, R. F.; Wascher, E.; Watzl, C.; Nöthlings, U.; Hengstler, J. G. Toxicity of Fluoride: Critical Evaluation of Evidence for Human Developmental Neurotoxicity in Epidemiological Studies, Animal Experiments and in Vitro Analyses. Arch. Toxicol. 2020, 94, 1375–1415. 182. Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors Controlling Nanoparticle Pharmacokinetics: An Integrated Analysis and Perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481–503. 183. Liu, X.; Liu, T.; Tu, L.; Zuo, J.; Li, J.; Feng, Y.; Yao, C. J. Enhancing NIR‐II Upconversion Monochromatic Emission for Temperature Sensing. Small 2024, 20, 2308748. 184. Wu, S.; Butt, H. J. Near‐Infrared‐Sensitive Materials Based on Upconverting Nanoparticles. Adv. Mater. 2016, 28, 1208–1226. 185. Bergmann, C. P. Chemical and Mineralogical Analysis; In Techniques for Analysis of Mineral Raw Materials, Cham: Springer Nature Switzerland, 2024; pp. 5–85 186. Rabha, S.; Saikia, B. K. Advanced Micro- and Nanoscale Characterization Techniques for Carbonaceous Aerosols; In Handbook of Nanomaterials in Analytical Chemistry; Elsevier, Netherland, 2020; pp. 449–472. 187. Du, Z.; Yuan, J.; Zhou, Q.; Hettiarachchi, C.; Xiao, F. Laboratory Application of Imaging Technology on Pavement Material Analysis in Multiple Scales: A Review. Constr. Build. Mater. 2021, 304, 124619. 188. Demtröder, W. The Concept of the Atom; Springer, Berlin Heidelberg, 2018. 189. Alqaheem, Y.; Alomair, A. A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. 190. Liu, S.; Xue, Y.; Jia, R.; Tao, K.; Jiang, S.; Wu, Y.; Sun, H.; Guo, Q.; Zhang, L.; Feng, S. Design and Preparation of Integrated Voltage Divider for Silicon Drift Detector by Ion Implantation. J. Mater. Sci.: Mater. Electron. 2019, 30, 10152–10161. 191. Nagame, Y.; Hirata, M.; Nakahara, H. In Production and Chemistry of Transuranium Elements; Springer, US. 2011; Chapter 18, pp 817–875. 192. Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. 193. Bloomfield, V. A. Quasi-Elastic Light Scattering Applications in Biochemistry and Biology. Annu. Rev. Biomed. Eng. 1981, 10, 421–450. 194. Fujime, S. Quasi-Elastic Scattering of Laser Light. A New Tool for the Dynamic Study of Biological Macromolecules. Adv. Biophys. 1972, 3, 1–43. 195. Nobbmann, U.; Connah, M.; Fish, B.; Varley, P.; Gee, C.; Mulot, S.; Chen, J.; Zhou, L.; Lu, Y.; Sheng, F. Dynamic Light Scattering as a Relative Tool for Assessing the Molecular Integrity and Stability of Monoclonal Antibodies. Biotechnol Genet Eng Rev. 2007, 24, 117–128. 196. Strutt, J. W. Xv. On the Light from the Sky, Its Polarization and Colour. Lond. Edinb. Dubl. Phil. Mag. 1871, 41, 107–120. 197. Strutt, J. W. Lviii. On the Scattering of Light by Small Particles. Lond. Edinb. Dubl. Phil. Mag. 1871, 41, 447–454. 198. Sutherland, W. Lxxv. A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin. Lond. Edinb. Dubl. Phil. Mag. 1905, 9, 781–785. 199. Weiss, J. N. Dynamic Light Scattering (DLS) Spectroscopy; Springer International Publishing: Berlin, 2022. 200. Satpathy, A.; Huang, W. T.; Chan, M. H.; Su, T. Y.; Kamiński, M.; Majewska, N.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Hsiao, M.; Liu, R. S. Near‐Infrared I/II Nanophosphors with Cr3+/Ni2+ Energy Transfer for Bioimaging. Adv. Opt. Mater. 2023, 11, 2300321. 201. Inokuti, M.; Hirayama, F. Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence. J. Chem. Phys. 1965, 43, 1978–1989. 202. Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. 203. Wang, L.-C.; Chang, L.-C.; Su, G.-L.; Chang, P.-Y.; Hsu, H.-F.; Lee, C.-L.; Li, J.-R.; Liao, M.-C.; Thangudu, S.; Treekoon, J.; Yu, C.-C.; Sheu, H.-S.; Tu, T.-Y.; Su, W.-P.; Su, C.-H.; Yeh, C.-S. Chemical Structure and Shape Enhance MR Imaging-Guided X-Ray Therapy Following Marginative Delivery. ACS Appl. Mater. Interfaces. 2022, 14, 13056–13069. 204. Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y.; Lee, G. H. Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced T1 MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and in Vivo T1 MR Images. ACS Nano 2009, 3, 3663–3669. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98161 | - |
| dc.description.abstract | 近年,近紅外光材料之設計與應用日益增加,其相較紫外光與可見光,於組織內之低自發螢光、低散射及低組織吸收之特性,組織穿透能力佳,為生醫影像領域提供前景。其中以近紅外光二區(NIR-II; 900–1800 nm)材料,尤為受注目,其為影像提供優異之訊噪比與高空間解析度,為具應用潛力之螢光材料。
本研究分為兩部分,第一部分以NIR-II光源應用為核心,使用中孔洞二氧化矽限制無機螢光粉於奈米尺度,以部分反尖晶石MgGa2O4結構為發光材料,摻雜Cr3+與Ni2+離子作為發光中心,利用兩離子間之能量轉移,大幅增加能量轉換效率,故提升Ni2+離子NIR-II之內部量子效率達55.8%,NIR全區放光達79.2%。次毫米發光二極體(mini-LED)具極高亮度、長使用壽命及節省能源之特性,為高解析顯示器之熱門選項,本研究之材料發光效率佳與尺寸小之特性作為其螢光體,其對於提升mini-LED對比度具發展潛力。 第二部分以NIR-II顯影劑應用作為核心,開發奈米Gd2O3氧化物,摻雜Yb3+與Er3+離子作為發光中心。以常見之808與980 nm雷射激發,實現高量子效率之NIR-IIb與NIR-IIx放光,期望增加影像之訊噪比,並由組織穿透深度測試與體內肝臟成像,揭示此窗口卓越之穿透能力達1公分與其應用潛力。本研究亦詳細探討Yb3+-Er3+系統NIR-II範圍之詳細光學特性與材料作為核磁顯影劑之可行性。 本研究之新穎性在於結合NIR-II光源與顯影劑之材料開發,為NIR-II之應用提供嶄新選項。第一部分著重於開發具優異光學特性與高效能之奈米螢光粉材料,並首度將其應用於NIR-II次毫米發光二極體,展現潛力於生醫影像與光電元件領域。第二部分則探討鑭系氧化物作為螢光/核磁雙模式顯影劑之可行性,並由光譜分析深入研究Yb³⁺-Er³⁺系統之下轉換發光機制,以建立針對肝臟成像之顯影策略,期望提升臨床非侵入式成像之準確性與可靠性。 | zh_TW |
| dc.description.abstract | In recent years, the design and application of near-infrared (NIR) materials have garnered increasing attention. Compared to ultraviolet and visible light, NIR light offers superior tissue penetration due to its low autofluorescence, minimal scattering, and reduced absorption in biological tissues. These properties render NIR materials highly advantageous for biomedical imaging. Notably, materials operating in the near-infrared-II window (NIR-II) have emerged as promising, providing exceptional signal-to-noise ratios and high spatial resolution, thus representing a class of fluorescent probes with significant potential for biomedical applications.
This study is divided into two parts. The first part focuses on the application of NIR-II light sources. Mesoporous silica is employed to confine the inorganic phosphors at the nanoscale. The luminescent material is based on a partially inverse spinel structure of MgGa₂O₄, doped with Cr³⁺ and Ni²⁺ ions as emission centers. The energy conversion efficiency is significantly enhanced through energy transfer between these two ions. As a result, the internal quantum efficiency of Ni²⁺ emission in the NIR-II region reaches 55.8%, with a total NIR emission efficiency across the full region of 79.2%. Mini-LEDs, known for their high brightness, long operational lifetime, and energy efficiency, are considered promising candidates for next-generation high-resolution displays. The developed phosphor materials, featuring high luminescence efficiency and nanoscale dimensions, are expected to improve contrast ratios and demonstrate strong potential for application in advanced mini-LED technologies. The second part of this study focuses on the application of NIR-II imaging agents, specifically developing Gd₂O₃-based nanomaterials doped with Yb³⁺ and Er³⁺ ions as luminescent centers. Under excitation by commonly used 808 nm and 980 nm lasers, high quantum efficiency emission in the NIR-IIb and NIR-IIx regions is achieved, aiming to enhance the signal-to-noise ratio (SNR) of imaging. Tissue penetration depth tests and in vivo liver imaging further demonstrate the exceptional penetration capability of this spectral window, reaching up to 1 cm, thereby highlighting its promising potential for biomedical applications. Additionally, the optical properties of the Yb³⁺–Er³⁺ system within the NIR-II range are thoroughly investigated, and the feasibility of these nanomaterials as dual-function magnetic resonance imaging (MRI) contrast agents is also explored. The novelty of this study lies in the integrated development of materials for NIR-II light sources and contrast agents, offering innovative options for NIR-II-related applications. The first part focuses on the synthesis of nanophosphor materials with excellent optical properties and high efficiency, which are applied in NIR-II mini-LEDs for the first time, demonstrating promising potential in biomedical imaging and optoelectronic devices. The second part explores the feasibility of lanthanide oxides as dual-modal contrast agents for fluorescence and magnetic resonance imaging (MRI). Through spectroscopic analysis, the downshifting luminescence mechanisms of the Yb³⁺-Er³⁺ system are thoroughly investigated to develop an imaging strategy specifically for liver diagnostics. This approach is expected to enhance the accuracy and reliability of clinical non-invasive imaging techniques. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:09:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:09:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract v 目次 vii 圖次 xii 表次 xxi 英文縮寫表 xxii 第一章、緒論 1 1.1 近紅外光與近紅外光二區 1 1.2 無機螢光粉(Inorganic phosphor) 3 1.2.1 無機螢光粉組成 3 1.2.2 主體晶格與活化劑 4 1.3 光致發光材料性能指標與機制 6 1.3.1 能量轉移(energy transfer) 7 1.3.2 下轉換、上轉換及交叉弛豫 8 1.3.3 非輻射弛豫(nonradiative relaxation/transition) 11 1.3.4淬滅效應(quenching effect) 11 1.4 紅外光二區奈米粒子應用 14 1.5本研究之近紅外光奈米材料 18 1.6第一部分:近紅外光奈米粒子應用於次毫米發光二極體 19 1.6.1近代發光二極體(Light-Emitting Diodes; LEDs) 19 1.6.1.1 次毫米發光二極體與螢光粉 19 1.6.1.2 次毫米發光二極體類型與組成 20 1.6.2 3d過渡金屬活化劑 21 1.6.3第一部份:研究動機與目的 23 1.7第二部分:近紅外光奈米粒子應用於生物顯影 26 1.7.1近紅外光螢光生物顯影(bioimaging) 26 1.7.1.1生物組織光學窗口 27 1.7.1.2水分子與光學影像 30 1.7.2 多模式顯影 33 1.7.3 常見近紅外光螢光顯影材料 34 1.7.3.1稀土發光材料 36 1.7.3.2 鑭系元素光學性質 39 1.7.3.3 鑭系紅外光螢光奈米材料 39 1.7.4 磁振造影 42 1.7.4.1自旋-晶格弛豫(Spin-lattice relaxation) 43 1.7.4.2自旋-自旋弛豫(Spin-spin relaxation) 45 1.7.4.3弛緩率(Relaxivity) 47 1.7.5 磁振造影顯影劑(MRI contrast agent) 48 1.7.5.1含釓顯影劑 48 1.7.5.2含釓顯影劑弛豫效應 50 1.7.5.3含釓顯影劑毒性 51 1.7.6溶膠-凝膠製程原理 51 1.7.6.1溶膠與凝膠 52 1.7.6.2檸檬酸溶膠-凝膠法 55 1.7.7 第二部分:研究動機與目的 57 第二章、實驗步驟與儀器分析原理 60 2.1 化學藥品 60 2.2 第一部分:實驗步驟 62 2.2.1中孔洞二氧化矽奈米粒子(MSN)之合成 62 2.2.2 MGOCN@MSN之合成 62 2.3 第二部分:實驗步驟 63 2.3.1 GOYE奈米粒子之合成 63 2.3.2 GOYE奈米粒子之APTES修飾 63 2.3.3細胞培養 64 2.3.4細胞存活率測試 64 2.3.5溶血反應測試 65 2.3.6樣品組織穿透度量測 66 2.3.7皮下/尾靜脈注射小鼠980 nm紅外光顯影。 66 2.4 儀器原理 68 2.4.1 粉末X射線繞射儀(Powder X-ray diffractometer; PXRD) 68 2.4.2 掃描式顯微鏡(Scanning electron microscope; SEM) 72 2.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy; TEM) 75 2.4.4 能量色散X-射線光譜(Energy-dispersive X-ray spectroscopy; EDS) 80 2.4.5 光激發光譜儀(Photoluminescence spectrometer; PL) 82 2.4.6 變溫光激發螢光光譜(Temperature-dependent photoluminescence) 85 2.4.7絕對量子產率光譜儀(Absolute photoluminescence quantum yield spectrometer) 85 2.4.8 紫外光/可見光光譜儀(UV-vis absorption spectrometer) 87 2.4.9 X射線吸收光譜(X-ray absorption Spectrum; XAS) 90 2.4.10連續波電子順磁共振波譜儀(Continuous-Wave Electron Paramagnetic Resonance; CW-EPR) 94 2.4.11比表面積及孔徑分析儀(Surface area and porosity analysis) 97 2.4.12動態光散射與電泳光散射法(Dynamic light scattering and Electrophoretic light scattering; DLS and ELS) 100 2.4.13臨床磁振造影儀(Preclinical magnetic resonance imaging) 103 2.4.14 深冷相機 104 第三章、結果與討論 106 3.1第一部分:高量子效率之部分反尖晶石結構MgGa2O4:Cr3+,Ni2+中孔洞二氧化矽奈米螢光粉(MGOCN@MSN)應用於紅外光二區次毫米發光二極體 106 3.1.1中孔洞二氧化矽奈米粒子(MSN)之結構與形貌鑑定 106 3.1.2 MGOCN@MSN之結構與形貌鑑定 109 3.1.3 MGOCN@MSN螢光性質之探討 115 3.1.4 MGOCN@MSN之Cr3+-Ni2+能量轉移機制 121 3.1.5 MGOCN@MSN之變溫與變壓光譜 125 3.1.6 MGOCN@MSN次毫米發光二極體之元件測試 129 3.2第二部分:鑭系奈米粒子Gd2O3:Yb3+,Er3+ (GOYE)作為近紅外光二區螢光/磁振雙模式顯影劑之影像與光學性質探討 132 3.2.1 GOYE之形貌與結構鑑定 132 3.2.2 GOYE螢光光譜分析 139 3.2.3 GOYE之Yb3+-Er3+能量轉移機制 147 3.2.4 GOYE變溫光譜 151 3.2.5 GOYE@APTES之形貌鑑定 155 3.2.6 GOYE@APTES之生物相容性 157 3.2.7 GOYE@APTES顯影劑之NIR-II螢光與磁振影像 160 第四章、結論 177 第五章、參考文獻 179 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米螢光粉 | zh_TW |
| dc.subject | 近紅外光二區 | zh_TW |
| dc.subject | 次毫米發光二極體 | zh_TW |
| dc.subject | 鑭系奈米粒子 | zh_TW |
| dc.subject | 顯影劑 | zh_TW |
| dc.subject | 螢光成像 | zh_TW |
| dc.subject | mini-LED | en |
| dc.subject | nanophosphor | en |
| dc.subject | fluorescence imaging | en |
| dc.subject | contrast agent | en |
| dc.subject | rare-earth nanoparticle | en |
| dc.subject | near-infrared II | en |
| dc.title | 應用於光源與顯影之近紅外光二區奈米材料 | zh_TW |
| dc.title | Near-Infrared II Nanomaterials for Light Sources and Contrast Agent Development | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江建文;蘇昭瑾;葉晨聖;詹明賢 | zh_TW |
| dc.contributor.oralexamcommittee | Kien-Voon Kong;Chao-Chin Su ;Chen-Sheng Yeh;Ming-Hsien Chan | en |
| dc.subject.keyword | 奈米螢光粉,近紅外光二區,次毫米發光二極體,鑭系奈米粒子,顯影劑,螢光成像, | zh_TW |
| dc.subject.keyword | nanophosphor,near-infrared II,mini-LED,rare-earth nanoparticle,contrast agent,fluorescence imaging, | en |
| dc.relation.page | 199 | - |
| dc.identifier.doi | 10.6342/NTU202501356 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
