Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98156Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林宗岳 | zh_TW |
| dc.contributor.advisor | Tsung-Yueh Lin | en |
| dc.contributor.author | 蘇泳璉 | zh_TW |
| dc.contributor.author | Yong-Lian Su | en |
| dc.date.accessioned | 2025-07-30T16:08:43Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | [1] W. J. M. Rankine, “On the mechanical principles of the action of propellers,” Transactions of the Institution of Naval Architects, 1865.
[2] R. E. Froude, Papers on Naval Architecture and Other Subjects, 1878. [3] L. Prandtl, “Tragflügeltheorie,” Göttinger Nachrichten, 1918. [4] H. Glauert, The Elements of Aerofoil and Airscrew Theory, Cambridge University Press, 1926. [5] S. Goldstein, “On the vortex theory of screw propellers,” Proc. of the Royal Society of London. Series A, vol. 123, no. 792, pp. 440–465, 1929. [6] T. Theodorsen, General Theory of Aerodynamic Instability and the Mechanism of Flutter, NACA Report No. 496, 1935. [7] J. L. Hess and A. M. O. Smith, “Calculation of non-lifting potential flow about arbitrary three-dimensional bodies,” Journal of Ship Research, vol. 8, no. 2, pp. 22–44, 1964. [8] J. L. Hess, “Calculation of potential flow about arbitrary bodies,” Progress in Aerospace Sciences, vol. 8, pp. 1–138, 1967. [9] J. L. Hess and A. M. O. Smith, “Calculation of potential flow about arbitrary bodies,” Progress in Aerospace Sciences, vol. 9, pp. 141–232, 1969. [10] J. L. Hess, Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies: Final Technical Report, No. MDC J5679-01, Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, CA, 1972. [11] L. Morino and R. Kuo, “Subsonic potential aerodynamics for complex configurations: A general theory,” AIAA Journal, vol. 12, no. 2, pp. 191–197, 1974. [12] J. E. Kerwin, A Deformed Wake Model for Marine Propeller, Review and Final Report, Dept. of Ocean Engineering, Massachusetts Institute of Technology, 1976. [13] Kerwin, J. E., Kinnas, S. A., Lee, J. T. and Shih, W. Z. : A Surface Panel Method for Hydrodynamic Analysis of Ducted Propellers, Trans. SNAME, Vol. 95, 1987, pp. 93-122. [14] T. Hoshino, “Hydrodynamic analysis of propellers in steady flow using a surface panel method” presented at the Autumn Meeting of The Society of Naval Architects of Japan, Nov. 1989. [15] T. Hoshino, “Hydrodynamic analysis of propellers in steady flow using a surface panel method – 2nd report: Flow field around propeller,” presented at the Autumn Meeting of The Society of Naval Architects of Japan, Nov. 1989. [16] S. A. Kinnas and C.-Y. Hsin, “Boundary element method for the analysis of the unsteady flow around extreme propeller geometries,” AIAA Journal, vol. 30, no. 3, pp. 688–694, Mar. 1992. [17] S. A. Kinnas and N. E. Fine, “A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils,” Journal of Fluid Mechanics, vol. 254, pp. 151–181, 1993. [18] W. D. Ramsey, Boundary Integral Methods for Lifting Bodies with Vortex Wakes (Doctoral dissertation), Massachusetts Institute of Technology, 1996. [19] J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed., Cambridge University Press, 2001. [20] J.-T. Lee, A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow (Doctoral dissertation), Massachusetts Institute of Technology, 1987. [21] J. M. R. da C. Baltazar, On the Modelling of the Potential Flow about Wings and Marine Propellers Using a Boundary Element Method (Doctoral dissertation), Universidade Técnica de Lisboa, Instituto Superior Técnico, 2008. [22] Y. Tian and S. A. Kinnas, “A wake model for the prediction of propeller performance at low advance ratios,” International Journal of Rotating Machinery, vol. 2012, Article ID 372364, 11 pages, 2012. [23] T. M. Altena, Surface Gradient Algorithms for Unstructured Grid Panel Methods (Master’s thesis), University of Twente, Faculty of Engineering & Technology, Department of Thermal & Fluid Engineering, to be defended July 18, 2024. [24] SIMMAN 2008, “KCS Geometry and Propeller Data.” [Online]. Available: http://www.simman2008.dk/KCS/kcs_geometry.htm. [Accessed: May 13, 2025]. [25] T. Y. Lin, Numerical Simulation of Thrust Deduction Factor and Hull Form Optimization for Propulsive Efficiency of Large Containership and Bulk Carrier, Doctoral dissertation, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98156 | - |
| dc.description.abstract | 在勢流理論中,流場可藉由求解奇異點分布進行解析,實體幾何通常以源(source)與偶源(doublet)表示。然而,對於升力體,則需額外引入由偶源所組成的跡流(wake)結構進入計算。本研究旨在探討螺槳跡流幾何參數化後,各參數對面元法(panel method)計算螺槳單獨螺槳試驗的影響。
分析部分首先進行幾何參數的敏感度分析,以判斷對計算結果影響最大的參數,接著針對幾何參數進行大範圍變化分析以了解整體參數的作用與趨勢。最後將不同的螺槳跡流幾何模型以小板法計算並與官方實驗數據進行比較。 參數分析結果顯示,跡流幾何的螺距比對性能計算的影響最為顯著,其次為流縮比,高負載相對於低負載對跡流幾何參數較敏感。基本上所有的幾何參數對結果的影響皆呈現單調變化,但幾何參數的調整對整體的壓力分佈與環流分布影響有限,難以直接滿足Kutta Condition。將不同的跡流幾何模型與實驗資料進行比較,低負載時所有的跡流模型與實驗值符合且差異不大,表示螺槳在低負載時對跡流幾何不敏感,但隨著負載增加,跡流需隨負載變化且以提升預測準確性。 | zh_TW |
| dc.description.abstract | In potential flow theory, the flow field can be resolved through the distribution of singularities, with solid boundaries typically represented using sources and doublets. However, for lifting bodies, an additional wake structure composed of doublets must be introduced into the computation. This study examines the influence of propeller wake geometry on the panel method's prediction of open-water performance.
The analysis begins with a sensitivity study on wake geometric parameters to identify which parameter most significantly affects the computational results. A large parametric variation is then conducted to examine the influence and trends of the parameters. Finally, different wake models are evaluated using the panel method and compared against official experimental data. The parameter analysis reveals that the ultimate wake pitch ratio has the most significant impact on performance predictions, followed by the contraction ratio. The geometry is also found to be more sensitive to parameter changes under high loading conditions. In general, geometric parameters exhibit monotonic effects on the results; however, their influence on overall pressure and circulation distributions is limited, making it difficult to directly satisfy the Kutta condition through parameter tuning alone. When comparing the wake models with experimental data, all models demonstrate good agreement under low loading conditions, indicating that propeller performance is less sensitive to wake geometry in such regimes. As the loading increases, the wake must be adjusted accordingly to improve prediction accuracy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:08:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:08:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Content iv Figure Content vii Table Content x Symbol Table xi Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Literature Review 2 1.2.1 Propeller Propulsion Theorem 2 1.2.2 Panel Method 2 1.2.3 Propeller Wake Model 3 1.3 Research Purpose 4 1.4 Thesis Structure 5 Chapter 2. Methodology 6 2.1 Potential Flow Formulation 6 2.1.1 Basic Assumption and Governing Equation 6 2.1.2 Description of Potential Flow Problem and Physical Consideration 7 2.2 Perturbation Method 8 2.3 Boundary Condition 11 2.3.1 Free-stream Condition 11 3.1.2 Non-Penetrate Condition 12 2.4 Kutta Condition 13 2.4.1 Wake Doublet Strength 14 2.4.2 Wake Geometry 15 2.5 Zero-Order Panel Method 16 2.5.1 Discretization and Linear System 16 2.5.2 Quadrilateral Constant-strength Singularity Element 18 2.5.3 Reduction of linear System for K-Blade Propeller 21 2.6 Velocity and Fluid Dynamic Load Calculation 22 2.7 Numerical Gradient of Three-Dimensional Plane 23 Chapter 3. Marine Propeller and Propeller Wake 25 3.1 Global Coordinate System 25 3.2 Blade Geometry 26 3.3 Hub Geometry 28 3.4 Wake Geometry 30 3.4.1 Parameter definition of Wake Geometry 30 3.4.2 Wake Grid Generate 32 3.5 Propeller Open Water Performance Metrics 34 Chapter 4. Verification and Validation 35 4.1 Analytical Solution of Sphere and calculation result by panel method 35 4.2 propeller Grid Convergency Study 36 4.3 Validation of Open-Water Performance Calculation 38 Chapter 5. Result and discussion 41 5.1 Test Condition 41 5.1.1 Grid Setting and Implementation 41 5.1.2 Wake Geometry Parameter in Sensitivity and Large Variation Analysis 43 5.1.3 Wake Model Analysis 45 5.2 Result 47 5.2.1 Parameter Sensitivity Analysis 47 5.2.2 Parameter Large Variation Analysis 48 5.2.3 Wake Length and Grid Density Convergency 50 5.2.4 Different Wake Model Analysis 51 5.3 Discussion 54 5.3.1 Discussion of Wake Geometry Parameter Analysis Result 54 5.3.2 Discussion of Wake Length and Grid Density Convergency 55 5.3.3 Discussion of Different Wake model Result 56 Chapter 6. Conclusion 57 Reference 58 Appendix 60 | - |
| dc.language.iso | en | - |
| dc.subject | 螺槳跡流幾何模型 | zh_TW |
| dc.subject | 螺槳跡流 | zh_TW |
| dc.subject | 單獨螺槳性能 | zh_TW |
| dc.subject | 小板法 | zh_TW |
| dc.subject | 勢流理論 | zh_TW |
| dc.subject | potential flow | en |
| dc.subject | panel method | en |
| dc.subject | propeller open-water performance | en |
| dc.subject | propeller wake geometry model | en |
| dc.subject | propeller wake | en |
| dc.title | 螺槳跡流幾何模型於小板法之參數化研究 | zh_TW |
| dc.title | Parametric Study of Propeller Wake Geometry Model in Surface Panel Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭真祥;吳炳承 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Ssiang Kouh;Ping-Chen Wu | en |
| dc.subject.keyword | 螺槳跡流,螺槳跡流幾何模型,勢流理論,小板法,單獨螺槳性能, | zh_TW |
| dc.subject.keyword | propeller wake,propeller wake geometry model,potential flow,panel method,propeller open-water performance, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202502113 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Access limited in NTU ip range | 3.41 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
