Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗岳zh_TW
dc.contributor.advisorTsung-Yueh Linen
dc.contributor.author張鈞淳zh_TW
dc.contributor.authorJiun-Chun Changen
dc.date.accessioned2025-07-30T16:08:30Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation[1]International Maritime Organization (2023). Strategic plan for the organization for the six-year period 2024 to 2029 Assembly 33rd session Agenda item 8(a).
[2]ITTC. Resistance Committee – Final Report and Recommendations to the 26th ITTC. International Towing Tank Conference, 2011.
[3]Batchelor, G. K. An Introduction to Fluid Dynamics.Cambridge University Press, 1967.
[4]Hoerner, S. F. Fluid-Dynamic Drag. Hoerner Fluid Dynamics, 1965.
[5]Wang, Z.-z.,Xiong, Y., Shi, L.-p., & Liu, Z.-h. (2015). A numerical flat plate friction line and its application. Journal of Hydrodynamics, 27(3), 383–393. https://doi.org/10.1016/S1001-6058(15)60496-6
[6]ITTC (1933). Proceedings of the 1st International Towing Tank Conference.
[7]ITTC. (2002). Resistance Committee – Recommended Procedures and Guidelines:7.5-02-02-01.
[8]Hughes, G. (1954). "Friction and form resistance in turbulent flow and a proposed formulation for use in model and ship correlation." Transactions of the Institution of Naval Architects, 96, 314–376.
[9]Prohaska, C. (1966). “A simple method for the evaluation of the form factor and the low speed resistance.”
[10]García Gómez, G.A. (2000). “On the form factor scale effect.” Ocean Engineering, 26(1), 97–109. https://doi.org/10.1016/S0029-8018(98)00114-4
[11]Terziev, M., Tezdogan, T., & Incecik, A. (2019). A geosim analysis of ship resistance decomposition and scale effects with the aid of CFD. Applied Ocean Research, 92, 101930. https://doi.org/10.1016/j.apor.2019.101930.
[12]Korkmaz, K. B., Werner, S., & Bensow, R. E. (2019). Investigations for CFD based form factor methods. Proceedings of the 22nd Numerical Towing Tank Symposium (NuTTS), Tomar, Portugal. Retrieved from.
[13]Kouh, J.-S., Chen, Y.-J., & Chau, S.-W. (2009). Numerical study on scale effect of form factor. Ocean Engineering, 36(8), 578–587.https://doi.org/10.1016/j.oceaneng.2009.01.013.
[14]Alfonsi, G. (2009). Reynolds-Averaged Navier-Stokes Equations for Turbulence Modeling. Applied Mechanics Reviews - APPL MECH REV. 62. 10.1115/1.3124648.
[15]Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries " Journal of Computational Physics, vol. 39, pp. 201–225.
[16]Roache, P. J. (1994). A method for uniform reporting of grid refinement studies. Albuquerque, NM: Sandia National Laboratories.
[17]Groves, N. C., Huang, T. T., & Chang, M. S. (1989). Geometric characteristics of DARPA SUBOFF models (DTRC Model Nos. 5470 and 5471) (DTRC/SHD-1298-01). David Taylor Research Center, Ship Hydromechanics Department.
[18]Liu, H. L., & Huang, T. T. (1998). Summary of DARPA SUBOFF experimental program data (CRDKNSWC/HD-1298-11). Naval Surface Warfare Center, Carderock Division.
[19]ITTC (2021). Example for Uncertainty Analysis of Resistance Tests in Towing Tanks, Recommended Procedures and Guidelines 7.5-02-02-02.1.
[20]Liao, J.-K. (2016). Experimental Study on Energy Efficiency Design Index by Using Free Running Model Test. National Taiwan University Department of Engineering Science and Ocean Engineering Master Thesis.
[21]X. Lyu, H. Tang, J. Sun, X. Wu, and X. Chen, “Simulation of microbubble resistance reduction on a SUBOFF model,” Brodogradnja, vol. 65, no. 2, pp. 23–32, 2014.
[22]Takahashi, K. (2020). Numerical simulations of comprehensive hydrodynamic performance of DARPA SUBOFF submarine.
[23]K. B. Korkmaz, S. Werner, and R. Bensow, “CFD based form factor determination method,”Ocean Engineering, vol. 220, p. 108451, 2020. DOI: 10.1016/j.oceaneng.2020.108451
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98155-
dc.description.abstract船舶在航行中所受之總阻力主要可分為摩擦阻力與形狀阻力兩大部分,其中形狀阻力主要由船體幾何所引發之壓力分布差異與流體分離所致,即使對於流線型船體亦不容忽視。為量化船體幾何對黏性壓力阻力的影響,Hughes 方法引入形狀因子(form factor)之概念,並將總阻力係數拆解為平板摩擦係數與形狀因子所放大的黏性壓力阻力項。
在實驗應用上,Prohaska 方法被廣泛用於估算形狀因子,其假設波浪阻力與福勞德數具有多項式關係,常以福勞德數的次方項作為橫軸進行回歸擬合,由低速試驗數據推估出形狀因子(1+K)。為提升線性擬合效果,實務上常根據數據趨勢調整次方項,一般介於 4 至 6 之間,然而近年研究指出,形狀因子實際上會隨雷諾數而變化,挑戰傳統「形狀因子為定值」的假設,並引發尺度外推上的誤差與不確定性。
為改善此問題,本研究提出一套穩定的線性估算方法,透過總阻力係數與平板摩擦係數間之線性關係,取代傳統形狀因子定義。研究結合拖曳水槽實驗與 CFD 模擬,針對球艏油輪與 SUBOFF 模型在多組雷諾數與福勞德數條件下進行分析,並探討壓力與剪應力分布對阻力構成的影響。結果顯示,總阻力與平板摩擦阻力具穩定的線性關係,並可於不同條件下保持一致性,有效降低尺度外推誤差。
進一步從物理角度分析,發現艉部壓力分布受雷諾數影響而產生變化,而剪應力分布則相對穩定,驗證所提模型具備物理依據。該方法不僅能提升阻力預測之準確度,亦簡化傳統流程,具備推廣至多船型與多尺度條件之潛力。雖然目前在實驗條件下尚難以於固定福勞德數下調整流體黏滯度,但於 CFD 模擬環境中,本方法已展現高度應用價值,為船舶水動力性能評估提供嶄新之預測框架。
zh_TW
dc.description.abstractTotal resistance of a ship generally consists of skin friction and form drag. Form drag arises from pressure distribution differences and flow separation induced by hull geometry and remains significant even for streamlined hull forms. To quantify the influence of hull shape on viscous pressure resistance, Hughes method introduced the concept of form factor, which scales flat-plate friction coefficient to account for three-dimensional effects.
In experimental applications, Prohaska method is widely used to estimate form factor. It assumes a polynomial relationship between wave-making resistance and Froude number, and commonly uses powers of Froude number as the horizontal axis for regression fitting. To improve linearity, the exponent is often adjusted based on the trend of the data, typically ranging from 4 to 6. However, recent studies have shown that form factor may vary with Reynolds number, challenging the conventional assumption of its constancy and introducing scale-effect-induced uncertainty during extrapolation.
To address this issue, this study proposes a stable linear estimation approach that eliminates the need for a predefined form factor by establishing a direct linear relationship between total resistance coefficient and flat-plate friction coefficient. The methodology integrates towing tank experiments and CFD simulations conducted using Star-CCM+ for a bulbous bow tanker and DARPA SUBOFF model under various Reynolds and Froude number conditions. Shear stress and pressure distribution analyses were conducted to examine the physical origin of the observed linearity.
Results demonstrate a robust linear relationship that holds consistently across different Reynolds numbers. Stern pressure distribution was found to change with Reynolds number, while shear stress distribution remained relatively stable, supporting the physical validity of the proposed model. The method not only enhances prediction accuracy but also simplifies conventional workflow, offering potential scalability across different hull types and operating conditions.
Although adjusting viscosity at a fixed Froude number is currently infeasible in experimental setups, the method proves highly practical in CFD frameworks and provides a novel, physically grounded approach to ship resistance prediction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:08:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:08:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Contents V
List of Figures VIII
List of Tables XII
List of Symbols XIII
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 2
1.2.1 Form Drag Characteristics in Streamlined Bodies 2
1.2.2 Development of Ship Resistance Analysis and Scale Extrapolation Method 3
1.2.3 Development and Estimation Methods of Form Factor 4
1.2.4 Application of CFD in Ship Resistance and Form Factor Estimation 5
1.3 Research Purpose 7
1.4 Research Method 8
1.5 Thesis Structure 9
Chapter 2 Research Methods 10
2.1 Scaling Principles and Resistance Decomposition 10
2.2 CFD Method 12
2.2.1 Governing Equations 12
2.2.2 Resistance Decomposition and Form Factor Estimation in CFD Simulation 15
2.3 Proposed Method 16
Chapter 3 Experimental Model and System 18
3.1 Test Setup 18
3.1.1 Model Data 18
3.1.2 Towing Tank Data 19
3.2 Resistance Test 20
3.3 Equipment Calibration 21
3.4 Resistance Test Procedure 24
Chapter 4 CFD Simulation 26
4.1 Bulbous bow tanker CFD Simulation Setup 26
4.1.1 Geometry Construction and Preprocessing 26
4.1.2 CFD Physics Models 26
4.1.3 Computational Domain and Boundary Conditions 29
4.1.4 Mesh Setup 32
4.1.5 Verification of Numerical Accuracy 35
4.1.6 Validation of Numerical Accuracy 36
4.2 DARPA SUBOFF CFD Simulation Setup 38
4.2.1 Geometry Construction and Preprocessing 38
4.2.2 CFD Physics Models 40
4.2.3 Computational Domain and Boundary Conditions 41
4.2.4 Mesh Setup 42
4.2.5 Verification of Numerical Accuracy 43
4.2.6 Validation of Numerical Accuracy 43
Chapter 5 Results and Discussion 46
5.1 Bulbous Bow Tanker: Experimental and Numerical Analysis 46
5.1.1 Model Resistance Test Results 46
5.1.2 Linear Correlation Analysis between Variables 50
5.1.3 Linear Correlation Analysis between CP and CF 54
5.1.4 Linear Correlation Analysis between CS and CF 61
5.2 DARPA SUBOFF: Numerical Analysis 67
5.2.1 Linear Correlation Analysis between CP and CF 68
5.2.2 Linear Correlation Analysis between CS and CF 74
5.3 Comparison with the Traditional Method 80
Chapter 6 Conclusion 84
6.1 Conclusions 84
6.2 Suggestions 87
References 88
-
dc.language.isoen-
dc.subject形狀因子zh_TW
dc.subject線性關係zh_TW
dc.subject阻力預估zh_TW
dc.subject形狀阻力zh_TW
dc.subjectCFD 模擬zh_TW
dc.subjectProhaska 方法zh_TW
dc.subjectform dragen
dc.subjectCFD simulationen
dc.subjectform factoren
dc.subjectresistance predictionen
dc.subjectlinear relationshipen
dc.subjectProhaska methoden
dc.title流線型形狀阻力之修正模型:計算與實驗分析zh_TW
dc.titleA Modified Form Drag Model of Streamline Bodies:Numerical and Experimental Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙修武;吳炳承zh_TW
dc.contributor.oralexamcommitteeShiu-Wu Chau;Ping-Chen Wuen
dc.subject.keyword形狀阻力,形狀因子,CFD 模擬,Prohaska 方法,線性關係,阻力預估,zh_TW
dc.subject.keywordform drag,form factor,CFD simulation,Prohaska method,linear relationship,resistance prediction,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202502395-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2030-07-24-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved