請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛人愷 | zh_TW |
| dc.contributor.advisor | Ren-Kae Shiue | en |
| dc.contributor.author | 張書維 | zh_TW |
| dc.contributor.author | Shu-Wei Chang | en |
| dc.date.accessioned | 2025-07-29T16:11:04Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Yan Zhang, YanKun Chen, DeShui Yu, DaQian Sun, HongMei Li, A review paper on effect of the welding process of ceramics and metals, Journal of Materials Research and Technology, Volume 9, Issue 6, 2020, Pages 16214-16236.
Jingqi Li, Yulong Li, Micro gas turbine: Developments, applications, and key technologies on components, Propulsion and Power Research, Volume 12, Issue 1, 2023, Pages 1-43, Grzegorz Moskal, Dawid Niemiec, Bartosz Chmiela, Piotr Kałamarz, Tomasz Durejko, Michał Ziętala, Tomasz Czujko, Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel, Surface and Coatings Technology, Volume 387, 2020, 125317. Norimitsu Murayama, Kiyoshi Hirao, Mutsuo Sando, Tetsuo Tsuchiya, Hiroshi Yamaguchi, High-temperature electro-ceramics and their application to SiC power modules, Ceramics International, Volume 44, Issue 4, 2018, Pages 3523-3530. Kiyoshi Hirao, You Zhou, Manabu Fukushima, Naoki Wakasugi, Katsuaki Suganuma, Evaluation of in-plane effective thermal conductivity for metalized ceramic substrates using a micro heater chip, Ceramics International, Volume 49, Issue 17, Part B, 2023, Pages 28593-28606. Argiro Ntasi, Youssef S. Al Jabbari, Wolf Dieter Mueller, Theodore Eliades, Spiros Zinelis, Electrochemical characterization of novel Ag-based brazing alloys for dental applications, Dental Materials, Volume 35, Issue 8, 2019, Pages 163-174. Qin Sun, Ludong Yang, Wanchun Yang, Hongjun Ji, Mingyu Li, Yufeng Li, Microstructure evolution and bonding mechanism of ZrO2 ceramic and Ti-6Al-4V alloy joints brazed by Bi2O3-B2O3-ZnO glass paste, Journal of the European Ceramic Society, Volume 42, Issue 13, 2022, Pages 5953-5963. Yoshihiro Hirata, Shinji Daio, Ayaka Kai, Taro Shimonosono, Reiji Yano, Soichiro Sameshima, Katsuhiko Yamaji, Performance of yttria-stabilized zirconia fuel cell using H2–CO2 gas system and CO–O2 gas system, Ceramics International, Volume 42, Issue 16, 2016, Pages 18373-18379. S. Hausner, B. Wielage, 12 - Brazing of metal and ceramic joints, Editor(s): Dušan P. Sekulić, In Woodhead Publishing Series in Welding and Other Joining Technologies, Advances in Brazing, Woodhead Publishing, 2013, Pages 361-393. Fayaz Ahmad Mir, Noor Zaman Khan, Saad Parvez, Recent advances and development in joining ceramics to metals, Materials Today: Proceedings, Volume 46, Part 15, 2021, Pages 6570-6575. Yan Zhang, YanKun Chen, DeShui Yu, DaQian Sun, HongMei Li, A review paper on effect of the welding process of ceramics and metals, Journal of Materials Research and Technology, Volume 9, Issue 6, 2020, Pages 16214-16236. Börner, FD., Schreier, M., Feng, B. et al., Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules, Journal of Materials Research, Volume 29, 2014, Pages 1771-1780. K.S. Weil, J.S. Hardy, J.P. Rice, J.Y. Kim, Brazing as a means of sealing ceramic membranes for use in advanced coal gasification processes, Fuel, Volume 85, Issue 2, 2006, Pages 156-162. Huaping Xiong, Bo Chen, Yu Pan, Wanlin Guo, Wei Mao, Qingsong Ma, Joining of Si3N4 ceramic using PdCo(NiSiB)–V system brazing filler alloy and interfacial reactions, Progress in Natural Science: Materials International, Volume 24, Issue 1, 2014, Pages 61-67. Alberto Passerone, Maria Luigia Muolo, Rada Novakovic, Daniele Passerone, Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ZrB2 systems, Journal of the European Ceramic Society, Volume 27, Issue 10, 2007, Pages 3277-3285. Weibing Guo, Zongyu She, Haitao Xue, Xiaoming Zhang, Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation, Ceramics International, Volume 46, Issue 4, 2020, Pages 5430-5435. 1Caron, N., Bianchi, L., Méthout, S., Development of a Functional Sealing Layer for SOFC Applications, Journal of Thermal Spray Technology, Volume 17, 2008, Pages 598-602. Jens T. Darsell, K. Scott Weil, High temperature strength of YSZ joints brazed with palladium silver copper oxide filler metals, International Journal of Hydrogen Energy, Volume 36, Issue 7, 2011, Pages 4519-4524. Hardy, J.S., Kim, J.Y., Thomsen, E.C., Weil, K.S., Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Air Braze Filler Metals, Journal of The Electrochemical Society, Volume 154, Number 3, 2007, Pages P32. Ragnar Kiebach, Kurt Engelbrecht, Laila Grahl-Madsen, Bertil Sieborg, Ming Chen, Johan Hjelm, Kion Norrman, Christodoulos Chatzichristodoulou, Peter Vang Hendriksen, An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells, Journal of Power Sources, Volume 315, 2016, Pages 339-350. Fasquelle, D., Chi, Z., Belakry, S., Impregnation of gadolinium-doped ceria backbone electrodes modified by addition of pore-formers for SOFC application, Journal of Solid State Electrochemistry, Volume 27, 2023, Pages 695–703. Huangang Shi, Chao Su, Ran Ran, Jiafeng Cao, Zongping Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Progress in Natural Science: Materials International, Volume 30, Issue 6, 2020, Pages 764-774. Elleuch, A., Halouani, K., Li, Y., Exploration of complex electrochemical and chemo‐mechanical behavior of solid oxide fuel cell fueled with pyrolysis bio‐oil, Fuel Cells, Volume 18, Issue 2, 2018, Pages 206-218. Azra Selimovic, Miriam Kemm, Tord Torisson, Mohsen Assadi, Steady state and transient thermal stress analysis in planar solid oxide fuel cells, Journal of Power Sources, Volume 145, Issue 2, 2005, Pages 463-469. Nowotny, Janusz, et al., Defect Chemistry and Defect-Dependent Properties of Undoped and Stabilised Zirconia. Bulk vs Interface, Key Engineering Materials, Volume 153–154, 1998, Pages 211–240. Prerna Vinchhi, Mukesh Khandla, Kiran Chaudhary, Ranjan Pati, Recent advances on electrolyte materials for SOFC: A review, Inorganic Chemistry Communications, Volume 152, 2023,110724. Menna M. Abo-Zeid, Mohamed S. El-Deab, A. AbdelKareem, Omayma A.M. El-Kady, A.M. Daher, Impurities Effect on the Charge Mobility of Yttria-Stabilized Zirconia, International Journal of Electrochemical Science, Volume 11, Issue 4, 2016, Pages 3137-3146. B Smuk, M Szutkowska, J Walter, Alumina ceramics with partially stabilized zirconia for cutting tools, Journal of Materials Processing Technology, Volume 133, Issues 1–2, 2003, Pages 195-198. Kogler, Michaela, Köck, Eva-Maria, Perfler, Lukas, Bielz, Thomas, Stöger-Pollach, Michael, Hetaba, Walid, Willinger, Marc, Huang, Xing, Schuster, Manfred, Klötzer, Bernhard, Penner, Simon, Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2, Chemistry of Materials, Volume 26, Issue 4, 2014, Pages 1690–1701. W.G. Coors, J.R. O'Brien, J.T. White, Conductivity degradation of NiO-containing 8YSZ and 10YSZ electrolyte during reduction, Solid State Ionics, Volume 180, Issues 2–3, 2009, Pages 246-251. Guangdong Li, Yunjie Gou, Jinshuo Qiao, Wang Sun, Zhenhua Wang, Kening Sun, Recent progress of tubular solid oxide fuel cell: From materials to applications, Journal of Power Sources, Volume 477, 2020, 228693. F Tietz, H.-P Buchkremer, D Stöver, Components manufacturing for solid oxide fuel cells, Solid State Ionics, Volumes 152–153, 2002, Pages 373-381. S.P.S Badwal, Stability of solid oxide fuel cell components, Solid State Ionics, Volume 143, Issue 1, 2001, Pages 39-46. Kupecki, J., Modeling, Design, Construction, and Operation of Power Generators with Solid Oxide Fuel Cells, Springer International Publishing, 2018. Davide Papurello, Andrea Lanzini, Sonia Fiorilli, Federico Smeacetto, Rahul Singh, Massimo Santarelli, Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): Deactivation in single cells and a stack, Chemical Engineering Journal, Volume 283, 2016, Pages 1224-1233. Spotorno, Roberto, Ostrowska, Marlena, Delsante, Simona, Dahlmann, Ulf, Piccardo, Paolo, Characterization of Glass-Ceramic Sealant for Solid Oxide Fuel Cells at Operating Conditions by Electrochemical Impedance Spectroscopy, Materials, Volume 13, Issue 21, 2020, Pages 4702. Neelima Mahato, Amitava Banerjee, Alka Gupta, Shobit Omar, Kantesh Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, Volume 72, 2015, Pages 141-337. K.A. Nielsen, M. Solvang, S.B.L. Nielsen, A.R. Dinesen, D. Beeaff, P.H. Larsen, Glass composite seals for SOFC application, Journal of the European Ceramic Society, Volume 27, Issues 2–3, 2007, Pages 1817-1822. F. Smeacetto, M. Salvo, M. Ferraris, J. Cho, A.R. Boccaccini, Glass–ceramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs, Journal of the European Ceramic Society, Volume 28, Issue 1, 2008, Pages 61-68. Jeffrey W. Fergus, Sealants for solid oxide fuel cells, Journal of Power Sources, Volume 147, Issues 1–2, 2005, Pages 46-57. Wenning Liu, Xin Sun, Mohammad A. Khaleel, Predicting Young's modulus of glass/ceramic sealant for solid oxide fuel cell considering the combined effects of aging, micro-voids and self-healing, Journal of Power Sources, Volume 185, Issue 2, 2008, Pages 1193-1200. Marita Kerstan, Christian Rüssel, Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD), Journal of Power Sources, Volume 196, Issue 18, 2011, Pages 7578-7584. Lees, Frank P., Mannan, M. Sam, Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Fourth Edition, Butterworth-Heinemann (an imprint of Elsevier), 2012. 黃亮維,「釔安定氧化鋯/Crofer 合金硬銲接點之氣密特性與電子微探儀進行顯微組織之探討」博士論文,國立臺灣大學材料科學與工程學研究所,2022年。 Kun-Lin Lin, Mrityunjay Singh, Rajiv Asthana, Chao-Hsien Lin, Interfacial and mechanical characterization of yttria-stabilized zirconia (YSZ) to stainless steel joints fabricated using Ag–Cu–Ti interlayers, Ceramics International, Volume 40, Issue 1, Part B, 2014, Pages 2063-2071. Huang, Liang-Wei, Shiue, Ren-Kae, Liu, Chien-Kuo, Cheng, Yung-Neng, Lee, Ruey-Yi, Tsay, Leu-Wen, Vacuum Brazing of Metallized YSZ and Crofer Alloy Using 72Ag-28Cu Filler Foil, Materials, Volume 15, Issue 3, 2022, Pages 939. Xuan-Vien Nguyen, Chang-Tsair Chang, Guo-Bin Jung, Shih-Hung Chan, Win-Tai Lee, Shu-Wei Chang, I-Cheng Kao, Study of sealants for SOFC, International Journal of Hydrogen Energy, Volume 41, Issue 46, 2016, Pages 21812-21819. Giuma Ayoub, Djordje Veljovic, Maja Lezaja Zebic, Vesna Miletic, Eriks Palcevskis, Rada Petrovic, Djordje Janackovic, Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts – The processing and application as dentin substitutes, Ceramics International, Volume 44, Issue 15, 2018, Pages 18200-18208. S.A. Tsipas, I.O. Golosnoy, Effect of substrate temperature on the microstructure and properties of thick plasma-sprayed YSZ TBCs, Journal of the European Ceramic Society, Volume 31, Issue 15, 2011, Pages 2923-2929. Michael C. Tucker, Craig P. Jacobson, Lutgard C. De Jonghe, Steven J. Visco, A braze system for sealing metal-supported solid oxide fuel cells, Journal of Power Sources, Volume 160, Issue 2, 2006, Pages 1049-1057. Xiaoliang Zhou, Kening Sun, Yan Yan, Shiru Le, Naiqing Zhang, Wang Sun, Peng Wang, Investigation on silver electric adhesive doped with Al2O3 ceramic particles for sealing planar solid oxide fuel cell, Journal of Power Sources, Volume 192, Issue 2, 2009, Pages 408-413. Xiaoqing Si, Jian Cao, Belma Talic, Ilaria Ritucci, Chun Li, Junlei Qi, Jicai Feng, Ragnar Kiebach, A novel Ag-based sealant for solid oxide cells with a fully tunable thermal expansion, Journal of Alloys and Compounds, Volume 831, 2020, 154608. Liang-Wei Huang, Yi-Yen Wu, Ren-Kae Shiue, The effect of oxygen pressure in active brazing 8YSZ and Crofer 22H alloy, Journal of Materials Research and Technology, Volume 10, 2021, Pages 1382-1388. Chenglai Xin, Wenbo Liu, Ning Li, Jiazhen Yan, Sanqiang Shi, Metallization of Al2O3 ceramic by magnetron sputtering Ti/Mo bilayer thin films for robust brazing to Kovar alloy, Ceramics International, Volume 42, Issue 8, 2016, Pages 9599-9604. X.G. Song, C.N. Niu, S.P. Hu, D. Liu, J. Cao, J.C. Feng, Contact reactive brazing of Al7075 alloy using Cu layer deposited by magnetron sputtering, Journal of Materials Processing Technology, Volume 252, 2018, Pages 469-476. Singh, M., Shpargel, T.P., Asthana, R., Brazing of yttria-stabilized zirconia (YSZ) to stainless steel using Cu, Ag, and Ti-based brazes, Journal of Materials Science, Volume 43, 2008, Pages 23–32. Z.W. Yang, Z. Xiong, J.L. Wang, Y. Wang, D.P. Wang, Microstructural evolution and high-temperature oxidation resistance of YSZ/Crofer 22H brazed joints using Ag-based filler for solid-oxide fuel cell applications, Materials Characterization, Volume 200, 2023, 112888. Panpan Lin, Tiesong Lin, Peng He, Maochang Wang, Jia Yang, Microstructure evolution and mechanical properties of a vacuum-brazed Al2O3/Ti joint with Mo-coating on Al2O3 and Ti surfaces, Ceramics International, Volume 45, Issue 9, 2019, Pages 11195-11203. A. Laik, P. Mishra, K. Bhanumurthy, G.B. Kale, B.P. Kashyap, Microstructural evolution during reactive brazing of alumina to Inconel 600 using Ag-based alloy, Acta Materialia, Volume 61, Issue 1, 2013, Pages 126-138. J.L. Wang, Z.W. Yang, Y. Wang, D.P. Wang, H.J. Li, Microstructural stability and mechanical properties of Al2O3/Kovar 4 J34 joint vacuum brazed using Ag-5Cu-1Al-1.25Ti (wt%) filler metal, Journal of Manufacturing Processes, Volume 72, 2021, Pages 553-564. Hoseini, S Muhammad H, Khorsand, H, Hoseini, S Ali, Hoseini, S Abolfazl, Dissimilar Joining of SS 321 – Alumina Ceramic via Metalized Brazing Alloy and Investigation on Its Metallurgical and Microstructural Properties, CIRP Journal of Manufacturing Science and Technology, Volume 37, 2022, Pages 518–527. Ragnar Kiebach, Kurt Engelbrecht, Laila Grahl-Madsen, Bertil Sieborg, Ming Chen, Johan Hjelm, Kion Norrman, Christodoulos Chatzichristodoulou, Peter Vang Hendriksen, An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells, Journal of Power Sources, Volume 315, 2016, Pages 339-350. M Nagano, S Nagashima, H Maeda, A Kato, Sintering behavior of Al2TiO5 base ceramics and their thermal properties, Ceramics International, Volume 25, Issue 8, 1999, Pages 681-687. Yu Peng, Jinglong Li, Junmiao Shi, Shiwei Li, Jiangtao Xiong, Microstructure and mechanical properties of Al2O3 ceramic and Ti2AlNb alloy joints brazed with Al2O3 particles reinforced Ag–Cu filler metal, Vacuum, Volume 192, 2021, 110430. International Energy Agency, Coal 2024: Analysis and forecast to 2027, International Energy Agency, December 2024. 簡大舜、王銘揚、蔡進賜、謝翔帆、徐榮彬、梁達嵐,協和發電廠三年改善靜電集塵器效率達到粒狀物個位數排放專案,台電工程月刊,第859期, 第73-81頁,2020年。 Arpita Bhatt, Sharon Priyadarshini, Aiswarya Acharath Mohanakrishnan, Arash Abri, Melanie Sattler, Sorakrich Techapaphawit, Physical, chemical, and geotechnical properties of coal fly ash: A global review, Case Studies in Construction Materials, Volume 11, 2019, e00263. Maria Fezile Banda, Dithobolong Lovia Matabane, Alexis Munyengabe, A phytoremediation approach for the restoration of coal fly ash polluted sites: A review, Heliyon, Volume 10, Issue 23, 2024, e40741. 台灣電力公司,煤灰海事工程應用手冊,2021年。 黃兆龍,卜作嵐混凝土使用手冊,中興工程顧問社,2007年。 Jian Liang, Zijuan Tang, Fang Qi, Weihui Jiang, Xinbin Lao, Lifeng Miao, Huidong Tang, Jianmin Liu, Zhenhong Bao, Preparation of foam ceramics from solid wastes: a study on the relationship between firing regime and properties by grey system theory, Journal of Materials Research and Technology, Volume 26, 2023, Pages 58-70. Mengxue Wei, Suqing Liu, Yi Zhou, Shujiang An, Xiaohang Sun, Preparation and properties of CaO-Al2O3-SiO2-Fe2O3 system foam ceramics from fly ash and steel slag, Ceramics International, Volume 51, Issue 9, 2025, Pages 11672-11683. 魏稽生、譚立平,臺灣非金屬經濟礦物,經濟部中央地質調查所,1999年。 Oktay Bayat, Characterisation of Turkish fly ashes, Fuel, Volume 77, Issues 9–10, 1998, Pages 1059-1066. Sammy M. Nyale, Omotola O. Babajide, Grant D. Birch, Nuran Böke, Leslie F. Petrik, Synthesis and Characterization of Coal Fly Ash-based Foamed Geopolymer, Procedia Environmental Sciences, Volume 18, 2013, Pages 722-730. Shuangzhen Wang, Quantitative kinetics of pozzolanic reactions in coal/cofired biomass fly ashes and calcium hydroxide (CH) mortars, Construction and Building Materials, Volume 51, 2014, Pages 364-371. Barbara Lothenbach, Karen Scrivener, R.D. Hooton, Supplementary cementitious materials, Cement and Concrete Research, Volume 41, Issue 12, 2011, Pages 1244-1256. Luo, Y., Wu, Y., Ma, S., et al., Utilization of coal fly ash in China: a mini-review on challenges and future directions, Environmental Science and Pollution Research, Volume 28, 2021, Pages 18727–18740. Lu, Xuhang, Liu, Bo, Zhang, Qian, Wen, Quan, Wang, Shuying, Xiao, Kui, Zhang, Shengen, Recycling of Coal Fly Ash in Building Materials: A Review, Minerals, Volume 13, Issue 1, 2023, Pages 25. Vilakazi, Amanda Qinisile, Ndlovu, Sehliselo, Chipise, Liberty, Shemi, Alan, The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations, Sustainability, Volume 14, Issue 4, 2022. Hydrogen Fuel Cell White Paper, Bloom Energy website. Data_Sheet_VDM_Crofer_22_APU, VDM Metals, 2022. Safety Data Sheet, Product No. 16031, 16034 Pelco® Colloidal Silver. ASTM E886 Standard Practices for Dissolution of Refuse-Derived Fuel (RDF) Ash Samples for Analyses of Metals. Ye Yaping, Zeng Xiaoqiang, Qian Weilan, Wang Mingwen, Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash, Fuel, Volume 87, Issues 10–11, 2008, Pages 1880-1886. 臺大材料系貴重儀器介紹。Available from: https://www.hic.ch.ntu.edu.tw/EPMA/epma.html. Overview of Surface Analysis Instrumentation-XPS, AES, and Examples, 博精儀器股份有限公司教育訓練資料,2010年。 Martin Bram, Stephan Reckers, Pere Drinovac, Josef Mönch, Rolf W. Steinbrech, Hans Peter Buchkremer, Detlev Stöver, Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks, Journal of Power Sources, Volume 138, Issues 1–2, 2004, Pages 111-119. Ruizhu Li, Xiaopeng Liang, Xiaochun Wang, Wenli Zeng, Jiajun Yang, Dong Yan, Jian Pu, Bo Chi, Jian Li, Improvement of sealing performance for Al2O3 fiber-reinforced compressive seals for intermediate temperature solid oxide fuel cell, Ceramics International, Volume 45, Issue 17, Part A, 2019, Pages 21953-21959. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98137 | - |
| dc.description.abstract | 本研究提出一種利用鍍膜技術改善金屬Crofer22與陶瓷3YSZ接合的方法。透過真空濺鍍技術,在Crofer 22和3YSZ表面鍍上厚度約1.5~6μm鈦銅的複合薄膜。而後以銀作為母材的RAB (Reactive Air Brazing)製程,探討以此材料設計提升陶瓷與金屬接合面的顯微組織與反應機制,比較不同前處理厚度對顯微組織的影響,並以氣密試驗評估其成效。
結果顯示鍍膜製程可顯著提升接合效果,鍍膜在硬銲製程過後,在填料與金屬以及填料和陶瓷間,皆形成良好的反應界面層。就金屬和填料之間的接合處來看,金屬側含鐵和鉻氧化物的生成,可促進鈦和銅的擴散反應。銅元素在3YSZ界面的擴散變化行為較鈦元素明顯許多,在8μm的範圍內,元素百分比最高55 %,最低僅約5 %,因此硬銲層和3YSZ之間的接合,銅元素占主要地位。氣密試驗結果顯示成效良好,在2psig的條件下無壓力下降情形,最高試驗時間超過300小時,即使在600°C高溫條件下,仍能保持壓力條件。鍍膜厚度方面,本研究發現在3μm鍍膜的條件下,界面表現最好,在缺陷與製程良率控制上可達到最佳之效果。 為改善材料成本也助於電廠副產物材料的循環永續使用,佐以飛灰作為硬銲填料的添加劑,硬銲結果顯示,飛灰添加與否以及添加量,均會直接影響金屬Crofer22/銀銲料/陶瓷3YSZ界面層的顯微組織,5wt%飛灰的添加,對於Crofer與銀銲料之間的界面無明顯的不良影響,在硬銲區或界面並未發現單獨飛灰的球狀型態,考量飛灰為煤炭高溫燃燒後的產物,在硬銲後並未發現獨立的球形飛灰,雖有少量缺陷但界面接合良好無大尺寸裂紋。 當飛灰添加量達10wt%時,雖可順利接合,但在金屬側有可見之缺陷,也並未達成良好氣密之效果,在短時間即發生壓降,其主要原因可能為飛灰富含的鋁、矽等元素,與銅和銀之間反應較佳,和鉻元素的相容性較差,由於Crofer在硬銲過程表面的鉻氧化物的生成,而飛灰富含的鋁、矽等元素不與鉻元素相容,當飛灰的添加比例提高時,其元素間的不相容性因此而擴大,材料間差異性造成少部分的缺陷,此外,形狀不規則的飛灰顆粒較脆,因此在硬銲過程造成局部的空隙。 在氣密效果上,添加5%飛灰樣品的硬銲製程仍表現出優異的氣密性能。即使將試驗溫度提升到700 ℃,仍具備一定的氣密效果,平均洩漏率為1.5610-4 mbar·L/s。當飛灰的添加量提升到10%,氣密試驗顯示較明顯可見的氣體滲漏現象,約10小時即降至1psig,顯示10%的飛灰添加對於氣密效果的影響較大且負面。 在量產製程上,將10%鈦銅粉添加5%飛灰硬銲樣品進行氣密試驗,常溫與高溫600 ℃壓降結果結果顯示試驗期間均無壓降情形,亦即在量產製程上,添加飛灰仍具備實際應用於高溫氣密之可能性。 | zh_TW |
| dc.description.abstract | This study proposes a method to improve the joining between metal Crofer 22 and ceramic 3YSZ using a coating process. A composite thin film of titanium-copper with a thickness of approximately 1.5 to 6 µm was deposited on the surfaces of Crofer 22 and 3YSZ via vacuum sputtering. Subsequently, the microstructure and reaction mechanism of the ceramic-metal interface were investigated using a silver-based Reactive Air Brazing (RAB) process. The influence of different pre-treatment thicknesses on the microstructure was compared, and the effectiveness of the process was evaluated through gas‐tightness tests.
The results demonstrate that the coating process significantly enhances the joining performance. After the brazing process, a favorable reaction interface layer was formed between the filler and the metal and between the filler and the ceramic. In the metal-filler interface, forming iron and chromium oxides on the metal side facilitated the diffusion reaction of titanium and copper. The diffusion behavior of copper was more pronounced than that of titanium at the 3YSZ interface. Within an 8μm thickness, the percentage of copper varied significantly, from a maximum of 55 % to a minimum of approximately 5 %, indicating that copper plays a significant role in joining the brazing layer and 3YSZ. The gas-tightness tests showed excellent results, with no pressure drop observed under 2 psig conditions for over 300 hours, and the pressure was maintained even at 600°C. Regarding the coating thickness, the study found that the 3 µm coating provided the best interface performance, achieving optimal defect control and process yield. Fly ash was added to the brazing filler to reduce material costs and promote the sustainable use of power plant by-products. The brazing results showed that the addition and amount of fly ash directly affected the microstructure of the Crofer 22/silver filler/3YSZ interface. Adding 5 wt% fly ash did not significantly impair the Crofer-silver filler interface, and no individual spherical fly ash particles were observed in the brazing zone or interface. Given that fly ash is a product of high-temperature coal combustion, the absence of independent spherical fly ash particles after brazing, despite some minor defects, indicated good interface joining without large cracks. When the fly ash addition reached 10 wt%, successful joining was achieved. However, visible defects were observed on the metal side, and satisfactory gas-tightness was not attained, with a rapid pressure drop. This was likely due to the aluminum and silicon elements in fly ash reacting more favorably with copper and silver but having poor compatibility with chromium. As chromium oxide formed on the Crofer surface during brazing, the incompatibility between the elements increased with higher fly ash addition, resulting in defects due to material differences. The irregular and brittle fly ash particles also caused localized voids during brazing. The sample with 5 % fly ash addition exhibited excellent performance regarding the gas-tightness test. Even when the test temperature was raised to 700 °C, it maintained a certain degree of gas-tightness, with an average leak rate of 1.56×10⁻⁴ mbar·L/s. However, the sample with 10 % fly ash addition showed significant gas leakage, with the pressure dropping to 1 psig within approximately 10 hours, indicating a negative impact on gas-tightness. The brazing sample with 10 % titanium-copper powder and 5 % fly ash was subjected to gas-tightness tests at room temperature and 600 °C for mass production. The results showed no pressure drop during the tests, suggesting that fly ash addition remains a viable option for high-temperature sealing applications in mass production. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:11:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:11:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V 目次 VII 圖次 IX 表次 XII 第一章 前言 1 第二章 文獻回顧與研究方向 3 2-1 陶瓷與金屬異質材料接合 3 2-1-1 陶瓷與金屬異質材料接合應用 3 2-1-2 陶瓷與金屬異質材料接合技術 3 2-1-3 固態氧化物燃料電池材料架構 6 2-1-4 固態氧化物燃料電池之氣密條件與測試方法 10 2-2氧化鋯與不鏽鋼合金硬銲接合之發展現況與機會 13 2-2-1 氧化鋯與不鏽鋼合金硬銲接合的研究現況 13 2-2-2 氧化鋯與不鏽鋼合金硬銲接合的材料發展與機會 13 2-2-3 電廠副產物飛灰之應用可能性 17 2-3 本文之研究目標與方向 20 第三章 實驗方法 23 3-1 實驗之相關材料 23 3-2 實驗樣品之金屬化處理 30 3-3 3YSZ/Crofer異質材料硬銲實驗 32 3-5 3YSZ/Crofer硬銲接點顯微組織與組成分析 34 3-6 3YSZ/Crofer硬銲接點元素擴散分布分析 35 3-7 3YSZ/Crofer密封接合之氣密特性分析 37 第四章 金屬化前處理對硬銲接合之影響 39 4-1 金屬化鍍膜有無的差異 39 4-2 表面前處理厚度的差異 46 4-3 氣密試驗結果 54 4-4 元素擴散分布分析 57 第五章 飛灰添加對硬銲接合之影響 59 5.1 飛灰添加與否的差異 59 5.2 飛灰添加量提升的差異 67 5.3 量產製程的可能性測試 71 5.4 氣密試驗結果 77 第六章 結論 85 第七章 未來工作 87 參考文獻 89 個人論著發表 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 硬銲 | zh_TW |
| dc.subject | 異質接合 | zh_TW |
| dc.subject | 循環永續 | zh_TW |
| dc.subject | 飛灰 | zh_TW |
| dc.subject | 氣密性 | zh_TW |
| dc.subject | Gas‐tightness | en |
| dc.subject | Fly ash | en |
| dc.subject | Sustainability | en |
| dc.subject | Brazing | en |
| dc.subject | Dissimilar joining | en |
| dc.title | 氧化鋯/Crofer合金異質接合之材料製程與氣密特性之研究 | zh_TW |
| dc.title | Research on the Material Manufacturing Process and Gas-tight Properties of Yttria-stabilized Zirconia/Crofer Alloy Brazed Joint | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蔡履文;郭東昊;吳成有;黃亮維 | zh_TW |
| dc.contributor.oralexamcommittee | Leu-Wen Tsai;Dong-Hau Kuo;Cheng-You Wu;Liang-Wei Huang | en |
| dc.subject.keyword | 異質接合,硬銲,氣密性,飛灰,循環永續, | zh_TW |
| dc.subject.keyword | Dissimilar joining,Brazing,Gas‐tightness,Fly ash,Sustainability, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202501881 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
