請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98136完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卡艾瑋 | zh_TW |
| dc.contributor.advisor | Hervé Capart | en |
| dc.contributor.author | 李怡萱 | zh_TW |
| dc.contributor.author | Yi-Hsuan Lee | en |
| dc.date.accessioned | 2025-07-29T16:10:50Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173-1180. https://doi.org/10.1007/s00396-008-1882-2
Chen, T.-Y. (2022). Computational and experimental morphodynamics of aggrading fans. [Ph.D. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/6d46b8 Chen, T.-Y. K., Hung, C.-Y., Mullenbach, J., & Hill, K. (2022). Influence of fine particle content in debris flows on alluvial fan morphology. Scientific Reports, 12(1), 21730. https://doi.org/10.1038/s41598-022-24397-x Chen, Y.-L. (2018). Morphodynamics of the Pu-Tun-Pu-Nas Tributary Fan: Comparison of field survey, theory and lab experiments. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/xs4ytt Chiu, Y.-H., & Capart, H. (2023). Assessment of aggradation risk to the reconstructed Highway 20, Laonong river valley [CECI Engineering Consultants](Project No. 12925). Chiu, Y.-H., Hung, C.-Y., & Capart, H. (2024). 撒拉阿塢橋洪水及河床變動風險評估 [T.Y.Lin Taiwan Consulting Engineers inc.]. Dipova, N. (2017). Determining the grain size distribution of granular soils using image analysis. Acta Geotechnica Slovenica, 14, 29-37. Hsieh, M.-L., & Capart, H. (2013). Late Holocene episodic river aggradation along the Lao-nong River (southwestern Taiwan): An application to the Tseng-wen Reservoir Transbasin Diversion Project. Engineering Geology, 159, 83-97. https://doi.org/https://doi.org/10.1016/j.enggeo.2013.03.019 Hsieh, M.-L., & Chyi, S.-J. (2010). Late Quaternary mass-wasting records and formation of fan terraces in the Chen-yeo-lan and Lao-nung catchments, central-southern Taiwan. Quaternary Science Reviews, 29(11), 1399-1418. https://doi.org/https://doi.org/10.1016/j.quascirev.2009.10.002 Huang, C.-L. (2014). Debris fan morphology measured in the lab and field using digital photogrammetry. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/yxbwe5 Lai, Y.-J. (2010). Morphodynamics of coevolving fluvial and hyperpycnal valleys. [Ph.D. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/7r522k Lin, C.-H., & Lin, M.-L. (2015). Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Engineering Geology, 197, 172-187. https://doi.org/https://doi.org/10.1016/j.enggeo.2015.08.022 Lin, P.-C. (2024). Small-scale undistorted deposit fan experiments with plastic sand and carboxymethyl cellulose. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/5enfnr Lo, C.-M., Weng, M.-C., Lin, M.-L., Lee, S.-M., & Lee, K.-C. (2018). Landscape evolution characteristics of large-scale erosion and landslides at the Putanpunas Stream, Taiwan. Geomatics, Natural Hazards and Risk, 9(1), 175-195. https://doi.org/10.1080/19475705.2017.1414079 Ni, W.-J. (2005). Groundwater drainage and recharge by geomorphically active gullies. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/v7bym9 Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3D modeling: Current status and future perspectives. Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g): 14-16 September 2011, Zurich, Switzerland, Saleri, R., Cappellini, V., Nony, N., Luca, L. D., Pierrot-Deseilligny, M., Bardiere, E., & Campi, M. (2013, 28 Oct.-1 Nov. 2013). UAV photogrammetry for archaeological survey: The Theaters area of Pompeii. 2013 Digital Heritage International Congress (DigitalHeritage), Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., & Strecker, M. R. (2020). Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation. Earth Surf. Dynam., 8(2), 303-322. https://doi.org/10.5194/esurf-8-303-2020 Tsai, F., Hwang, J. H., Chen, L. C., & Lin, T. H. (2010). Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci., 10(10), 2179-2190. https://doi.org/10.5194/nhess-10-2179-2010 Tu, Y.-C. (2019). Trunk river erosion of a tributary fan margin: theory, experiment and field observation. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/4j8bd6 Veyrat-Charvillon, S., & Memier, M. (2006). Stereophotogrammetry of archive data and topographic approaches to debris-flow torrent measurements: calculation of channel-sediment states and a partial sediment budget for Manival torrent (Isère, France). Earth Surface Processes and Landforms, 31(2), 201-219. https://doi.org/https://doi.org/10.1002/esp.1322 WRA. (2009). 莫拉克颱風暴雨量及洪流量分析 [Water Resources Agency]. Wu, Y.-C. (2020). Route optimization subject to debris fan risk : field, experiment and modeling study. [M.Sc. Thesis, Graduate Institute of Civil Engineering, National Taiwan University]. https://hdl.handle.net/11296/ws75ug | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98136 | - |
| dc.description.abstract | 支流沖積扇的大量沉積作用會使河床高度在短時間內顯著抬升,連帶影響主流渠道位置的改變,從而降低河道穩定性,成為天然災害的重要危險因子。為探討主流河道與支流沖積扇的相互作用,本研究結合野外調查與模擬實驗,聚焦於沖積扇的形成、扇緣的侵蝕現象以及沉積物的移動特性。
於野外調查部分,本研究選取台灣南部荖濃溪及其支流布唐布納斯溪和玉穗溪作為研究對象。透過主河道縱剖面高程測量與無人飛行載具航拍,分析颱風事件前後支流沖積扇的地形變化和主流流量,並建立模擬實驗之參考數據。根據調查結果設計縮尺比為1:5000之荖濃溪現地3D列印模型作為基礎地形,並設計一土砂專用供應系統,將塑膠砂與羧甲基纖維素(CMC)水溶液混合物作為土石流材料進行沖積扇模擬。實驗完成後,使用雷射掃描記錄地形資料。 實驗結果顯示,模擬實驗成功複製了現地沖積扇的斜坡特性。然而,將模型比例放大至現地尺寸後會發現,其橫斷面累積厚度高於現地,導致模擬範圍較現地範圍更小。而沖積扇邊緣,會因主流侵蝕導致河道寬度產生變化,於實驗結果可以得知,河道寬度增加速率與主流流量成正相關。整體而言,實驗的高重複性使我們能夠觀察極端天氣條件下,沖積扇與主流河道之間的相互作用,記錄到許多現地調查難以即時捕捉的地形變化。 | zh_TW |
| dc.description.abstract | The debris fans of tributaries can significantly increase the bed elevation of a river channel in a short period of time, leading to changes in the position of the main channel and reducing channel stability, thus becoming a major risk factor for natural disasters. To understand the interactions between the trunk river and tributary debris fans, this study investigates the formation of debris fans, toe erosion, and sediment motion in the field and laboratory. Field surveys were conducted on the Laonong River and two tributaries, the Putunpunas and Yu-Shui, in southern Taiwan. Longitudinal profiles of the trunk river were measured, and unmanned aerial vehicle (UAV) imagery was collected to analyze morphological changes of debris fans at the confluence before and after a typhoon. Based on the field survey, we then conducted small-scale experiments using a 1:5000-scale 3D-printed physical model of a natural river valley. To represent debris flow influx, a special supply system was used to supply a mixture of plastic sand and Carboxy Methyl Cellulose (CMC) solution. A laser scanner was employed to record the topographic changes throughout the experiments. Experimental results show that although we have successfully simulated a debris fan with a slope similar to that on the field site, the cross-sectional profile reveals a greater cumulative thickness when we upscale it to field dimensions. Also, greater thickness in vertical depth means a smaller simulated debris fan area. Along the toe of the fan, the trunk river erodes sediment and increases in width at a rate proportional to the water flow rate of the trunk river. Overall, the high repeatability of the experiment has allowed us to observe the interactions between debris fans and the trunk river during extreme weather conditions, otherwise impossible to survey on a field site. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:10:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:10:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 中文摘要 v Abstract vii Contents ix List of Figures xi List of Tables xxiii Chapter 1 Introduction 1 Chapter 2 Field survey 6 2.1 Photo comparison 6 2.2 Camera observations 8 2.3 Aerial photogrammetry survey 13 2.4 Traverse survey and R8 GNSS 23 2.5 Choice of reference field conditions 26 Chapter 3 Experimental setup and procedure 36 3.1 Experiment set-up 36 3.1.1 The making of a 3D printed valley model 36 3.1.2 Experimental configuration 38 3.1.3 Debris flow composition 40 3.1.4 Supply system calibration 42 3.1.5 Deposit density test 47 3.2 Experimental procedure 48 3.2.1 Procedures for supplying modeled debris 48 3.2.2 Simulation of the debris flow of the trunk river 49 3.2.3 Simulation of the debris flow of the tributary 52 3.3 Imaging analysis 56 3.3.1 Laser calibration 56 3.3.2 Image calibration 58 3.3.3 Three-dimensional reconstruction 61 3.3.4 Waterline capturing 63 Chapter 4 Experimental results 64 4.1 Trunk River 65 4.2 Yu-Shui Tributary 84 4.3 Putunpunas Tributary 95 Chapter 5 Analysis and comparison 108 5.1 Fan formation 108 5.1.1 Yu-Shui Tributary 108 5.1.2 Putunpunas Tributary 114 5.1.3 Comparison 120 5.2 Toe erosion 121 5.2.1 Yu-Shui Tributary 121 5.2.2 Putunpunas Tributary 129 5.2.3 Comparison 136 5.3 Sediment motion 139 5.3.1 Yu-Shui Tributary 139 5.3.2 Putunpunas Tributary 151 5.3.3 Comparison 162 Chapter 6 Conclusion and future work 164 REFERENCES 166 | - |
| dc.language.iso | en | - |
| dc.subject | 沖積扇 | zh_TW |
| dc.subject | 土石流 | zh_TW |
| dc.subject | 形貌學 | zh_TW |
| dc.subject | 縮尺試驗 | zh_TW |
| dc.subject | 3D 列印山谷 | zh_TW |
| dc.subject | debris flow | en |
| dc.subject | debris fan | en |
| dc.subject | morphology | en |
| dc.subject | small-scale experiment | en |
| dc.subject | 3D printed valley | en |
| dc.title | 以小型 3D 列印山谷渠道研究土石流沖積扇之形成、扇緣侵蝕、泥沙傳遞 | zh_TW |
| dc.title | Debris fan formation, toe erosion, and sediment motion in a small-scale 3D printed valley | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳慈愔 | zh_TW |
| dc.contributor.coadvisor | Tzu-Yin Chen | en |
| dc.contributor.oralexamcommittee | 賴悅仁;吳富春;洪啟耀 | zh_TW |
| dc.contributor.oralexamcommittee | Yueh-Jen Lai ;Fu-Chun Wu ;Chi-Yao Hung | en |
| dc.subject.keyword | 土石流,沖積扇,3D 列印山谷,縮尺試驗,形貌學, | zh_TW |
| dc.subject.keyword | debris flow,debris fan,3D printed valley,small-scale experiment,morphology, | en |
| dc.relation.page | 169 | - |
| dc.identifier.doi | 10.6342/NTU202501582 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2030-07-21 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 29.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
