請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康 | zh_TW |
| dc.contributor.advisor | Chen-Kang Huang | en |
| dc.contributor.author | 涂少齊 | zh_TW |
| dc.contributor.author | Shao-Chi Tu | en |
| dc.date.accessioned | 2025-07-29T16:07:09Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | 蔡定甫。2024。雷射表面改質對核沸騰熱傳之影響。碩士論文。臺北:臺灣大學生物機電工程學系。
Bankoff, S. 1958. Entrapment of gas in the spreading of a liquid over a rough surface. AIChE Journal, 4(1), 24-26. Berce, J., Arhar, K., Hadžić, A., Zupančič, M., Može, M., and Golobič, I. 2024. Boiling-induced surface aging and crystallization fouling of functionalized smooth and laser-textured copper interfaces. Applied Thermal Engineering, 242, 122540. Bergman, T. L., Lavine, A. S., Incropera, F. P., and DeWitt, D. P. 2011. Introduction to Heat Transfer. Wiley. Carey, V. P. 2020. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. Boca Raton: CRC Press. Cooper, M. G., and Lloyd, A. J. P. 1969. The microlayer in nucleate pool boiling. International Journal of Heat and Mass Transfer, 12(8), 895-913. Gao, L., Bai, M., Lv, J., Li, Y., Lv, X., Liu, X., and Li, Y. 2023. Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling. Experimental Thermal and Fluid Science, 140, 110769. Godinez, J. C., Fadda, D., Lee, J., and You, S. M. 2019. Development of a stable Boehmite layer on aluminum surfaces for improved pool boiling heat transfer in water. Applied Thermal Engineering, 156, 541-549. Ho, J. Y., Wong, K. K., and Leong, K. C. 2016. Saturated pool boiling of FC-72 from enhanced surfaces produced by Selective Laser Melting. International Journal of Heat and Mass Transfer, 99, 107-121. Hsu, Y. Y. 1962. On the size range of active nucleation cavities on a heating surface. Journal of Heat Transfer, 84(3), 207-213. Kim, S. H., Lee, G. C., Kang, J. Y., Moriyama, K., Kim, M. H., and Park, H. S. 2015. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface. International Journal of Heat and Mass Transfer, 91, 1140-1147. Lee, C. Y., Zhang, B. J., and Kim, K. J. 2012. Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer. Experimental Thermal and Fluid Science, 40, 150-158. Li, S.-Y., Ji, W.-T., Zhao, C.-Y., Zhang, H., and Tao, W.-Q. 2019. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids. International Journal of Heat and Mass Transfer, 128, 762-772. Liu, B., Liu, J., Zhang, Y., Wei, J., and Wang, W. 2019. Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces. International Journal of Heat and Mass Transfer, 132, 259-270. Liu, J., Li, Q., Liu, L., Liu, B., and Zhou, P. 2025. Experimental study of the effect of the micro-cavity diameter on the onset of nucleate pool boiling. International Journal of Heat and Mass Transfer, 239, 126507. Mamani, J. B., Costa-Filho, A. J., Cornejo, D. R., Vieira, E. D., and Gamarra, L. F. 2013. Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization, 81, 28-36. Özdemir, M. R., Sadaghiani, A. K., Motezakker, A. R., Parapari, S. S., Park, H. S., Acar, H. Y., and Koşar, A. 2018. Experimental studies on ferrofluid pool boiling in the presence of external magnetic force. Applied Thermal Engineering, 139, 598-608. Pioro, I. l. 1999. Experimental evaluation of constants for the Rohsenow pool boiling correlation. International Journal of Heat and Mass Transfer, 42(11), 2003-2013. Rohsenow, W. M. 1952. A method of correlating heat-transfer data for surface boiling of liquids. Transactions of the American Society of Mechanical Engineers, 74(6), 969-975. Roy Chowdhury, S. K., and Winterton, R. H. S. 1985. Surface effects in pool boiling. International Journal of Heat and Mass Transfer, 28(10), 1881-1889. Sadaghiani, A. K., Rajabnia, H., Çelik, S., Noh, H., Kwak, H. J., Nejatpour, M., Park, H. S., Acar, H. Y., Mısırlıoğlu, B., Özdemir, M. R., and Koşar, A. 2020. Pool boiling heat transfer of ferrofluids on structured hydrophilic and hydrophobic surfaces: The effect of magnetic field. International Journal of Thermal Sciences, 155, 106420. Tien, C. L. 1962. A hydrodynamic model for nucleate pool boiling. International Journal of Heat and Mass Transfer, 5(6), 533-540. Wang, C. H., and Dhir, V. K. 1993. On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water. Journal of Heat Transfer, 115(3), 670-679. Yu, C. K., and Lu, D. C. 2007. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72. International Journal of Heat and Mass Transfer, 50(17), 3624-3637. Zuber, N. 1963. Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. International Journal of Heat and Mass Transfer, 6(1), 53-78. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98120 | - |
| dc.description.abstract | 隨著高效能電子設備的發展,其產生的熱量急劇上升,傳統散熱技術逐漸無法有效應對。兩相浸沒式冷卻技術因其優異的熱傳效能成為未來潛力散熱方案,其中核沸騰區間被視為最有效的熱傳方式。本研究旨在探討表面微結構與磁性奈米流體對核沸騰熱傳的影響,分為三部分進行:修正孔徑對核沸騰起始點(Onset of Nucleate Boiling, ONB)的過熱度影響的預測模型、參考預測模型並以雷射表面紋理化(Laser Surface Texturing, LST)最佳化微孔隙結構,最後探討三種磁場下對不同濃度Fe3O4磁性奈米流體沸騰熱傳影響。
由實驗結果顯示,透過修正汽泡成核標準與探討原始假設,大致符合Hsu所提出的預測孔徑對ONB影響的模型。雷射表面紋理化之微孔隙結構,相較平滑表面,三種表面ONB過熱度均提前,熱傳遞係數(Heat Transfer Coefficient, HTC)亦提升,微孔隙結構平均ONB過熱度提前5.6-5.9℃;在熱通量為500 kW/m2下,平均熱傳遞係數提升140-340%。 透過三種濃度Fe3O4磁性奈米流體應用於池沸騰實驗,並加入無磁場、N-S與N-N三種磁場條件。在熱通量為500 kW/m2時,相較於去離子水,平均熱傳遞係數提升18-45%。 | zh_TW |
| dc.description.abstract | With the advancement of high-performance electronic devices, the amount of heat generated has increased rapidly, making traditional cooling technologies increasingly insufficient. Two-phase immersion cooling has emerged as a promising solution due to its excellent heat transfer performance, especially in the nucleate boiling regime, which is considered the most effective mode of heat transfer. This study investigates the effects of surface microstructures and magnetic nanofluids on nucleate boiling heat transfer, divided into three parts: modifying the predictive model for the effect of cavity size on the superheat of the onset of nucleate boiling (ONB), optimizing microporous structures using laser surface texturing (LST) based on the model, and evaluating the boiling heat transfer performance of Fe3O4 magnetic nanofluids under three magnetic field conditions.
Experimental results show that the modified prediction model, which revises the bubble nucleation criteria and examines the initial assumptions, generally agrees with Hsu’s model on the relationship between cavity size and ONB. The microporous surfaces fabricated by LST demonstrated earlier ONB and improved heat transfer coefficient (HTC) compared to smooth surfaces. On average, the ONB superheat was reduced by 5.6–5.9°C, and the HTC was enhanced by 140–340% at a heat flux of 500 kW/m2. Fe3O4 magnetic nanofluids with three volume concentrations were tested in pool boiling experiments under three magnetic field conditions: no magnetic field, N–S, and N–N configurations. At a heat flux of 500 kW/m2, the average HTC increased by 18–45% compared to deionized water. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:07:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:07:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xi 符號索引 xiii 第一章 緒論 1 1.1 前言 1 1.2 沸騰曲線 2 1.3 研究動機 4 1.4 研究目的 4 第二章 文獻探討 5 2.1 核沸騰 5 2.2 微孔隙結構 8 2.3 微鰭片結構 14 2.4 表面改質損耗性 21 2.5 磁場對磁性奈米流體之影響 23 第三章 研究方法 27 3.1 池沸騰實驗 27 3.1.1 實驗裝置 27 3.1.2 沸騰試片 28 3.1.3 溫度擷取系統 29 3.1.4 冷卻系統與影像擷取系統 30 3.1.5 磁場系統 31 3.1.6 實驗流程 33 3.2 工作流體 34 3.2.1 去離子水 34 3.2.2 Fe3O4奈米流體 34 3.3 雷射表面紋理化 35 3.3.1 微孔隙結構 35 3.3.1.1 雷射規格 35 3.3.1.2 雷射燒蝕路徑 37 3.3.1.3 微孔隙結構表面最佳化 38 3.4 表面量測 40 3.4.1 接觸角量測 40 3.4.2 顯微鏡影像 40 3.5 不確定性分析 42 3.5.1 溫度之不確定性 43 第四章 結果與討論 45 4.1 孔徑對ONB過熱度影響預測模型修正 45 4.2 鋁6061合金平滑表面 49 4.2.1 表面量測 49 4.2.1.1 接觸角量測 49 4.2.1.2 顯微鏡影像 49 4.2.2 沸騰曲線與熱傳遞係數 51 4.2.3 汽泡影像 53 4.3 雷射微空隙結構 55 4.3.1 表面量測 55 4.3.1.1 接觸角量測 55 4.3.1.2 顯微鏡影像 56 4.3.1.3 其他影響實驗因素 57 4.3.2 沸騰曲線與熱傳遞係數 58 4.3.3 汽泡影像 60 4.4 Fe3O4奈米流體 63 4.4.1 表面量測 63 4.4.1.1 接觸角量測 63 4.4.1.2 顯微鏡影像 68 4.4.2 沸騰曲線與熱傳遞係數 72 4.4.2.1 無磁場條件 72 4.4.2.2 有磁場條件 74 4.4.3 汽泡影像 81 第五章 結論與建議 86 5.1 結論 86 5.2 建議 88 參考文獻 90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 池沸騰 | zh_TW |
| dc.subject | 兩相浸沒式冷卻 | zh_TW |
| dc.subject | Fe3O4磁性奈米流體 | zh_TW |
| dc.subject | 雷射紋理化 | zh_TW |
| dc.subject | Two-phase immersion cooling | en |
| dc.subject | Fe3O4 magnetic nanofluid | en |
| dc.subject | Laser surface texturing | en |
| dc.subject | Pool boiling | en |
| dc.title | 磁性奈米流體與表面微結構對核沸騰熱傳之影響 | zh_TW |
| dc.title | Effects of Magnetic Nanofluids and Surface Microstructures on Nucleate Boiling Heat Transfer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 翁輝竹;李宜庭 | zh_TW |
| dc.contributor.oralexamcommittee | Huei-Chu Weng;Yee-Ting Lee | en |
| dc.subject.keyword | 兩相浸沒式冷卻,池沸騰,雷射紋理化,Fe3O4磁性奈米流體, | zh_TW |
| dc.subject.keyword | Two-phase immersion cooling,Pool boiling,Laser surface texturing,Fe3O4 magnetic nanofluid, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202502262 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-24 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-07-22 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
