Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑zh_TW
dc.contributor.advisorChun-Chieh Wuen
dc.contributor.author陶昱丞zh_TW
dc.contributor.authorDavid Taoen
dc.date.accessioned2025-07-29T16:06:41Z-
dc.date.available2025-07-30-
dc.date.copyright2025-07-28-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citationAlland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021a: Combined Effects of Midlevel Dry Air and Vertical Wind Shear on Tropical Cyclone Development. Part I: Downdraft Ventilation. J. Atmos. Sci., 78, 763–782, https://doi.org/10.1175/JAS-D-20-0054.1.
——, ——, ——, and ——, 2021b: Combined Effects of Midlevel Dry Air and Vertical Wind Shear on Tropical Cyclone Development. Part II: Radial Ventilation. J. Atmos. Sci., 78, 783–796, https://doi.org/10.1175/JAS-D-20-0055.1.
Alvey III, G. R., and A. Hazelton, 2022: How Do Weak, Misaligned Tropical Cyclones Evolve Toward Alignment? A Multi-Case Study Using the Hurricane Analysis and Forecast System. Journal of Geophysical Research: Atmospheres, 127, e2022JD037268, https://doi.org/10.1029/2022JD037268.
Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112, 693–709, https://doi.org/10.1002/qj.49711247308.
Boehm, A. M., and M. M. Bell, 2021: Retrieved Thermodynamic Structure of Hurricane Rita (2005) from Airborne Multi–Doppler Radar Data. J. Atmos. Sci., 78, 1583–1605, https://doi.org/10.1175/JAS-D-20-0195.1.
Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent Progress in Tropical Cyclone Intensity Forecasting at the National Hurricane Center. Wea. Forecasting, 35, 1913–1922, https://doi.org/10.1175/WAF-D-20-0059.1.
Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between Potential Vorticity Tendency and Tropical Cyclone Motion. J. Atmos. Sci., 59, 1317–1336, https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2.
Chang, C.-C., and C.-C. Wu, 2017: On the Processes Leading to the Rapid Intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200, https://doi.org/10.1175/JAS-D-16-0075.1.
Chang, K.-F., C.-C. Wu, and K. Ito, 2023: On the Rapid Weakening of Typhoon Trami (2018): Strong Sea Surface Temperature Cooling Associated with Slow Translation Speed. Mon. Wea. Rev., 151, 227–251, https://doi.org/10.1175/MWR-D-22-0039.1.
Chen, Y.-A., and C.-C. Wu, 2023: Environmental Forcing of Upper-Tropospheric Cold Low on Tropical Cyclone Intensity and Structural Change. J. Atmos. Sci., 80, 1123–1144, https://doi.org/10.1175/JAS-D-22-0131.1.
Chung, M.-H., and C.-C. Wu, 2025: On Tropical Cyclone Genesis Types and Their Intensification Rate. Mon. Wea. Rev., 153, 811–830, https://doi.org/10.1175/MWR-D-24-0047.1.
DeMaria, M., 1996: The Effect of Vertical Shear on Tropical Cyclone Intensity Change. J. Atmos. Sci., 53, 2076–2088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
——, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is Tropical Cyclone Intensity Guidance Improving? Bull. Amer. Meteor. Soc., 95, 387–398, https://doi.org/10.1175/BAMS-D-12-00240.1.
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Dunion, J. P., 2011: Rewriting the Climatology of the Tropical North Atlantic and Caribbean Sea Atmosphere. J. Climate, 24, 893–908, https://doi.org/10.1175/2010JCLI3496.1.
Emanuel, K. A., 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci., 43, 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
——, 1988: The Maximum Intensity of Hurricanes. J. Atmos. Sci., 45, 1143–1155.
Finocchio, P. M., and R. Rios-Berrios, 2021: The Intensity- and Size-Dependent Response of Tropical Cyclones to Increasing Vertical Wind Shear. J. Atmos. Sci., 78, 3673–3690, https://doi.org/10.1175/JAS-D-21-0126.1.
Fischer, M. S., P. D. Reasor, R. F. Rogers, and J. F. Gamache, 2022: An Analysis of Tropical Cyclone Vortex and Convective Characteristics in Relation to Storm Intensity Using a Novel Airborne Doppler Radar Database. Mon. Wea. Rev., 150, 2255–2278, https://doi.org/10.1175/MWR-D-21-0223.1.
——, R. F. Rogers, P. D. Reasor, and J. P. Dunion, 2023: An Observational Analysis of the Relationship between Tropical Cyclone Vortex Tilt, Precipitation Structure, and Intensity Change. Mon. Wea. Rev., 152, 203–225, https://doi.org/10.1175/MWR-D-23-0089.1.
Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale Observations of Hurricane Dennis (2005): The Effects of Hot Towers on Rapid Intensification. J. Atmos. Sci., 67, 633–654, https://doi.org/10.1175/2009JAS3119.1.
Holland, G. J., 1997: The Maximum Potential Intensity of Tropical Cyclones. J. Atmos. Sci., 54, 2519–2541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Jones, J. J., M. M. Bell, and P. J. Klotzbach, 2020: Tropical and Subtropical North Atlantic Vertical Wind Shear and Seasonal Tropical Cyclone Activity. J. Climate, 33, 5413–5426, https://doi.org/10.1175/JCLI-D-19-0474.1.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Q.J.R. Meteorol. Soc., 121, 821–851, https://doi.org/10.1002/qj.49712152406.
——, 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Q.J.R. Meteorol. Soc., 126, 3137–3159, https://doi.org/10.1002/qj.49712657008.
——, 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Q.J.R. Meteorol. Soc., 126, 3161–3185, https://doi.org/10.1002/qj.49712657009.
Lee, T.-Y., C.-C. Wu, and R. Rios-Berrios, 2021: The Role of Low-Level Flow Direction on Tropical Cyclone Intensity Changes in a Moderate-Sheared Environment. J. Atmos. Sci., 78, 2859–2877, https://doi.org/10.1175/JAS-D-20-0360.1.
Marks, F. D., and Coauthors, 1998: Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities. Bull. Amer. Meteor. Soc., 79, 305–323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237.
Nguyen, L. T., and J. Molinari, 2015: Simulation of the Downshear Reformation of a Tropical Cyclone. J. Atmos. Sci., 72, 4529–4551, https://doi.org/10.1175/JAS-D-15-0036.1.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile Model for the Planetary Boundary Layer based on Large Eddy Simulation Data. Boundary-Layer Meteorology, 107, 401–427, https://doi.org/10.1023/A:1022146015946.
Nolan, D. S., 2011: Evaluating Environmental Favorableness for Tropical Cyclone Development with the Method of Point-Downscaling. J. Adv. Model. Earth Syst, 3, M08001, https://doi.org/10.1029/2011MS000063.
Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model., 9, 908–931, https://doi.org/10.1002/2016MS000796.
Reasor, P. D., and M. T. Montgomery, 2001: Three-Dimensional Alignment and Corotation of Weak, TC-like Vortices via Linear Vortex Rossby Waves. J. Atmos. Sci., 58, 2306–2330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.
——, and M. D. Eastin, 2012: Rapidly Intensifying Hurricane Guillermo (1997). Part II: Resilience in Shear. Mon. Wea. Rev., 140, 425–444, https://doi.org/10.1175/MWR-D-11-00080.1.
——, M. T. Montgomery, and L. D. Grasso, 2004: A New Look at the Problem of Tropical Cyclones in Vertical Shear Flow: Vortex Resiliency. J. Atmos. Sci., 61, 3–22, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.
——, R. Rogers, and S. Lorsolo, 2013: Environmental Flow Impacts on Tropical Cyclone Structure Diagnosed from Airborne Doppler Radar Composites. Mon. Wea. Rev., 141, 2949–2969, https://doi.org/10.1175/MWR-D-12-00334.1.
Rios-Berrios, R., and R. D. Torn, 2017: Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear. J. Atmos. Sci., 145, 1717–1738, https://doi.org/10.1175/MWR-D-16-0350.1.
——, C. A. Davis, and R. D. Torn, 2018: A Hypothesis for the Intensification of Tropical Cyclones under Moderate Vertical Wind Shear. J. Atmos. Sci., 75, 4149–4173, https://doi.org/10.1175/JAS-D-18-0070.1.
——, P. M. Finocchio, J. J. Alland, X. Chen, M. S. Fischer, S. N. Stevenson, and D. Tao, 2024: A Review of the Interactions between Tropical Cyclones and Environmental Vertical Wind Shear. J. Atmos. Sci., 81, 713–741, https://doi.org/10.1175/JAS-D-23-0022.1.
Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018a: The Unexpected Rapid Intensification of Tropical Cyclones in Moderate Vertical Wind Shear. Part I: Overview and Observations. Mon. Wea. Rev., 146, 3773–3800, https://doi.org/10.1175/MWR-D-18-0020.1.
——, J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The Unexpected Rapid Intensification of Tropical Cyclones in Moderate Vertical Wind Shear. Part II: Vortex Tilt. Mon. Wea. Rev., 146, 3801–3825, https://doi.org/10.1175/MWR-D-18-0021.1.
Shapiro, L. J., and H. E. Willoughby, 1982: The Response of Balanced Hurricanes to Local Sources of Heat and Momentum. J. Atmos. Sci., 39, 378–394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.
Skamarock, C., and Coauthors, 2021: A Description of the Advanced Research WRF Model Version 4.3, https://doi.org/10.5065/1dfh-6p97.
Stauffer, D. R., and N. L. Seaman, 1990: Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data. Mon. Wea. Rev., 118, 1250–1277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.
Tang, B., and K. Emanuel, 2010: Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity. J. Atmos. Sci., 67, 1817–1830, https://doi.org/10.1175/2010JAS3318.1.
Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst, 7, 1534–1553, https://doi.org/10.1002/2015MS000474.
——, and ——, 2019: Evolution of Dynamic and Thermodynamic Structures before and during Rapid Intensification of Tropical Cyclones: Sensitivity to Vertical Wind Shear. Mon. Wea. Rev., 147, 1171–1191, https://doi.org/10.1175/MWR-D-18-0173.1.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.
Velden, C. S., and J. Sears, 2014: Computing Deep-Tropospheric Vertical Wind Shear Analyses for Tropical Cyclone Applications: Does the Methodology Matter? Wea. Forecasting, 29, 1169–1180, https://doi.org/10.1175/WAF-D-13-00147.1.
Wang, Y., and G. J. Holland, 1996: Tropical Cyclone Motion and Evolution in Vertical Shear. J. Atmos. Sci., 53, 3313–3332.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes - a review. Meteorol Atmos Phys, 87, 257–278, https://doi.org/10.1007/s00703-003-0055-6.
Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The Effect of the Ocean Eddy on Tropical Cyclone Intensity. J. Atmos. Sci., 64, 3562–3578, https://doi.org/10.1175/JAS4051.1.
Wu, L., and Coauthors, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, https://doi.org/10.1029/2012GL053546.
Xu, Y., and Y. Wang, 2013: On the Initial Development of Asymmetric Vertical Motion and Horizontal Relative Flow in a Mature Tropical Cyclone Embedded in Environmental Vertical Shear. J. Atmos. Sci., 70, 3471–3491, https://doi.org/10.1175/JAS-D-12-0335.1.
Yu, C.-L., B. Tang, and R. G. Fovell, 2023: Tropical Cyclone Tilt and Precession in Moderate Shear: Precession Hiatus in a Critical Shear Regime. J. Atmos. Sci., 80, 909–932, https://doi.org/10.1175/JAS-D-22-0200.1.
Zawislak, J., H. Jiang, G. R. Alvey, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the Structure and Evolution of Hurricane Edouard (2014) during Intensity Change. Part I: Relationship between the Thermodynamic Structure and Precipitation. Mon. Wea. Rev., 144, 3333–3354, https://doi.org/10.1175/MWR-D-16-0018.1.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98118-
dc.description.abstract熱帶氣旋(TCs)在垂直風切(VWS)下的演變一直是天氣預報中的重要議題。在本研究中,VWS指的是深層風切,即200 hPa與850 hPa之間環境平均流場的差異,通常被認為對熱帶氣旋的發展具有不利影響。這種環境影響對氣象機構預報構成重大挑戰。先前的研究通常將影響熱帶氣旋的VWS分為三種類型:弱、中等和強烈VWS。其中,遭遇中等VWS的熱帶氣旋是最難預測的(Rios-Berrios and Torn 2017; Lee et al. 2021)。
近期關於熱帶氣旋在VWS下的研究主要集中在雷達觀測分析和理想模型研究。大多數觀測分析針對的是主要颶風,而使用理想模型的研究通常採用冷啟動方法,即將一個理想渦旋置於初始帶有風切的環境中,這些研究較少探討環境VWS變化對熱帶氣旋的影響,除了Finocchio和Rios-Berrios(2021)主要針對強烈VWS下主要颶風的演變進行分析外,對於弱熱帶氣旋在中等VWS變化中的研究仍存在空白。本研究旨在透過時變點降尺度方法(TVPDS; Onderlinde and Nolan 2017)填補這一空白。這項技術能在天氣研究與預報模型(WRF)中模擬隨時間變化的垂直風切背景流場。使用這種方法,我們先在無垂直風切的環境下模擬一理想渦旋的正常發展及增強,並選取三個不同的強度時間點(TD、TS和TY)作為實驗模擬的初始強度。這些實驗在兩種不同大小的VWS(7.5和10 ms⁻¹)下進行,以探究它們在遭遇中等VWS時的發展。
結果顯示,兩個較弱熱帶氣旋(TD和TS)的實驗組在遭遇VWS後,渦旋表現出了明顯的渦旋傾斜和渦旋進動(vortex precession)。然而,初始強度較強的實驗顯示出較小的渦旋傾斜和相對較弱實驗更短的渦旋進動週期。與先前研究結果一致(Rios-Berrios et al. 2018; Fischer et al. 2023),進動持續時間(24至48小時)明顯短於之前冷啟動的理想模擬研究所觀察到的(48至96小時)。基於位渦收支分析,我們發現渦旋進動和渦旋傾斜減少是由兩個渦度最大值相互環繞並合併引起的,這與Rios-Berrios et al.(2018)的分析部分吻合。同時,渦旋傾斜的減少主要由低層渦度中心(LLC)的位移主導,而非中層渦度中心(MLC)。一個是由MLC周圍的對流活動生成,另一個是由新渦度最大值提供的位渦流入維持的原始LLC。相比之下,較強熱帶氣旋(TY)的實驗組在整合VWS後對渦旋的影響明顯較小。雖然它們的風速演變與較弱實驗組別一樣都有發展停滯的情形發生,但發展停滯的狀況是主要由風切所造成的乾空氣入侵所引起。VWS越強,我們發現乾空氣的入侵效應也越強。
整體而言,我們的初步發現突顯了初始帶有垂直風切的平均流場下的渦旋發展與初始無風切渦旋遭遇垂直風切環境時的渦旋發展之間的差異。渦旋進動的持續時長以及低層渦度中心(LLC)在驅動渦旋傾斜減少和整體渦旋運動中的主導角色,是影響熱帶氣旋在VWS下演變的關鍵因素。未來的研究應基於不同環境條件,進一步探討熱帶氣旋在VWS下的不確定性,並深入分析乾空氣入侵與渦旋合併的機制。
zh_TW
dc.description.abstractThe evolution of tropical cyclones (TCs) under vertical wind shear (VWS) has long been an important issue in weather forecasting. VWS, in this study, refers to the deep-layer shear, which is the difference in environmental mean flow between 200 hPa and 850 hPa, mostly regarded to be detrimental to TCs. This environmental influence poses significant challenges to operational forecasts. Previous studies, in general, categorized the VWS exerted on TCs into three types: weak, moderate, and strong VWS. Among these, TCs encountering moderate VWS are the most challenging to predict (Rios-Berrios and Torn 2017; Lee et al. 2021).
Recent studies on TCs under VWS have primarily focused on radar observation analysis and idealized dynamical model runs. Most observations have been used to inspect major hurricanes, while idealized modelling studies often employ a cold start approach, which involves placing an ideal vortex in an initially sheared environment. These approaches are short of investigations into TCs changing environmental VWS, except for the work by Finocchio and Rios-Berrios (2021), which mainly examined the evolution of major TCs under strong VWS. This leaves a gap in the study of weak TCs experiencing moderate VWS changes. This study aims to compensate by employing the time-varying point-down-scaling method (Onderlinde and Nolan 2017), a technique that can implement time-varying and vertically sheared background mean flow in an idealized environment in the Weather Research and Forecasting model (WRF). Using this approach, we initiate an unsheared idealized TC and select three different intensity time stamps (TD, TS, and TY) as the initial intensities for the numerical experiments. These experiments are conducted under two different magnitudes of VWS (7.5 and 10 ms-1) to investigate their development when encountering moderate VWS.
The results show that the two experiments with weaker TCs (TD and TS) underwent vortex precession with significant vortex tilt after the integration of VWS. However, the experiments with stronger initial intensity exhibit smaller vortex tilt and shorter vortex precession period relative to the weaker ones. Consistent with results from previous studies (Rios-Berrios et al. 2018; Fischer et al. 2023), the duration of the precession (24 – 48 hrs) is noticeably shorter than those observed in former idealized cold-start studies (48 – 96 hrs). Based on the potential vorticity budget, we found that the vortex precession and vortex tilt reduction is caused by the two vorticity maxima orbiting and merging with each other, which partially agrees with Rios-Berrios et al. (2018). Meanwhile, the tilt reduction is primarily contributed by the displacement of the low-level vorticity center (LLC), rather than the mid-level vorticity center. One of the vorticity maximums is generated by the convective activities around MLC, and the other one stems from the original LLC sustained by the PV inflow from the new vorticity maximum. The stronger initial intensity can also make a difference in the tilt reduction process via a stronger magnitude of the PV inflow. In contrast, the experiments with a slightly stronger TC (TY) show a much lesser impact on the vortex after the integration of VWS. Although their intensification is delayed similarly to the weak experiments, this behavior is primarily attributed to dry air intrusion in our analysis. It has been observed that stronger vertical wind shear (VWS) is associated with more intense dry air intrusion.
Overall, our initial findings highlight the differences between vortex development under initially sheared mean flow and when an initially unsheared vortex encounters a vertically sheared environment. The duration of vortex precession and the dominant role of the low-level vorticity center (LLC) in driving vortex tilt reduction and overall vortex motion are also crucial factors in investigating the tilt reduction process. As to the ongoing work, studies based on different environments are needed to investigate the uncertainty of TCs under VWS. The mechanism of the dry air intrusion and vortex merging should also be further investigated.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:06:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-29T16:06:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Acknowledgements I
摘要 II
Abstract IV
Table of Contents VIII
List of Tables XI
List of Figures XII
Chapter 1 Introduction 1
1.1 Factors affecting tropical cyclone intensity and structure 1
1.2 The influence of VWS on tropical cyclones 3
1.3 The relation between TC intensity and vortex tilt 4
1.4 Current understanding of how weak TCs overcome VWS 6
1.5 Motivations 7
Chapter 2 Methodology 9
2.1 Numerical model settings 9
2.2 Baseline simulation and initial vortex configuration 10
2.3 Environmental flow implementation 11
2.4 Experimental design 13
Chapter 3 Results and analysis 15
3.1 Overview of the simulations 15
3.2 Tilt reduction analysis 18
3.2.1 Potential vorticity budget analysis 18
3.2.2 Potential vorticity pattern analysis 21
3.2.3 Convective activity pattern analysis 23
3.3 Intensity changes differed among TY cases 26
3.3.1 Response of mature TCs to moderate VWS 26
3.3.2 PV budget and structural analysis of TY cases 26
3.3.3 Dry air intrusion and intensity change mechanisms 27
Chapter 4 Summary and discussions 29
4.1 Summary 29
4.2 Discussions 30
4.3 Conclusion 33
References 35
Tables 47
Figures 49
 
-
dc.language.isoen-
dc.subject垂直風切zh_TW
dc.subject颱風強度與結構變化zh_TW
dc.subject時變點降尺度方法zh_TW
dc.subject理想模擬zh_TW
dc.subjectIdealized simulationen
dc.subjectTime-varying point downscaling methoden
dc.subjectEnvironmental vertical wind shearen
dc.subjectTropical cyclone intensificationen
dc.title中等垂直風切下熱帶氣旋結構演變與初始強度的關係zh_TW
dc.titleThe Relation between Tropical Cyclone Structure Evolution and Intensity Under Moderate Vertical Wind Shearen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游政谷;連國淵zh_TW
dc.contributor.oralexamcommitteeCheng-Ku Yu;Guo-Yuan Lienen
dc.subject.keyword颱風強度與結構變化,垂直風切,理想模擬,時變點降尺度方法,zh_TW
dc.subject.keywordTropical cyclone intensification,Environmental vertical wind shear,Idealized simulation,Time-varying point downscaling method,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202502183-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2025-07-30-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf8.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved