請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林忠緯 | zh_TW |
| dc.contributor.advisor | Chung-Wei Lin | en |
| dc.contributor.author | 陳羿穎 | zh_TW |
| dc.contributor.author | Yi-Ying Chen | en |
| dc.date.accessioned | 2025-07-29T16:06:28Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] G. Afifi and B. Mokhtar, “Vehicular-computational resource geofencing: Efficient spatiotemporal uncertainty estimation,” IEEE Access, vol. 13, pp. 43 653– 43 665, 2025.
[2] Automotive Edge Computing Consortium, “White paper: Distributed computing in an aecc system,” Automotive Edge Computing Consortium (AECC), 2021. [3] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware application scheduling in fog computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017. [4] S. Chen, L. Shi, X. Ding, Z. Lv, and Z. Li, “Energy efficient resource allocation and trajectory optimization in uav-assisted mobile edge computing system,” in International Conference on Big Data Computing and Communications, pp. 7–13, 2021. [5] L. Ghiro, R. L. Cigno, E. Tonini, S. Fontana, and M. Segata, “Can platoons form on their own?” in IEEE Vehicular Networking Conference (VNC), pp.180–187, May 2024. [6] K. Hayawi, J. Sajid, A. W. Malik, and S. S. Mathew, “Digital twin-assisted task offloading for workload management at fog nodes,” IEEE Internet of Things Journal, vol. 12, no. 13, pp. 23 061–23 072, 2025. [7] J. Hu, C. Chen, L. Cai, M. R. Khosravi, Q. Pei, and S. Wan, “Uav-assisted vehicular edge computing for the 6g internet of vehicles: Architecture, intelligence, and challenges,” IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 12–18, 2021. [8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a key technology towards 5g,” ETSI White Paper, vol. 11, no. 11, pp. 1–16, 2015. [9] Y. Hung, L.-K. Chou, H.-H. Tsai, H.-C. Wang, C.-W. Lin, and B. Kim, “Edgeassisted service allocation and delivery for connected vehicles with variable velocities,” in IEEE Vehicular Networking Conference (VNC), pp. 112–119, 2023. [10] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and networking: A survey,” in Mobile Networks and Applications. Springer, 2021, pp. 1145–1168. [11] A. Moradipari, S. S. Avedisov, and H. Lu, “Benefits of intent sharing in cooperative platooning,” in IEEE Vehicular Networking Conference (VNC), pp. 195–202, May 2024. [12] H. Nguyen, S. Sharma, R. V. Prasad, and F. Dressler, “A multi-lane platooning paradigm with etsi dcc,” in IEEE Vehicular Networking Conference (VNC), pp. 219–222, May 2024. [13] Z. Ning, P. Dong, X. Wang, J. Rodrigues, and F. Xia, “Deep reinforcement learning for vehicular edge computing: An intelligent offloading system,” ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 6, 2019. [14] S. Park, C. Park, S. Jung, M. Choi, and J. Kim, “Age-of-information aware caching and delivery for infrastructure-assisted connected vehicles,” IEEE Transactions on Vehicular Technology, vol. 73, no. 7, pp. 10 681–10 696, 2024. [15] PTV Planung Transport Verkehr AG, “PTV Vissim.” [Online]. Available: https://www.myptv.com/en/mobility-software/ptv-vissim. [16] T. Soleymani, N. Yazdani, and S. P. Shariatpanahi, “Multi-level deep reinforcement learning-based edge caching strategies in vehicular networks,” in 11th International Symposium on Telecommunications (IST), pp. 690–696, 2024. [17] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive learning-based task offloading for vehicular edge computing systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3061–3074, 2019. [18] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu, “Deepreinforcement-learning-based offloading scheduling for vehicular edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5449–5465, 2020. [19] Y. Zhao and B. Kim, “Optimizing allocation and scheduling of connected vehicle service requests in cloud/edge computing,” in IEEE International Conference on Cloud Computing, pp. 361–369, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98117 | - |
| dc.description.abstract | 本論文重點研究聯網自駕車隊的資源選擇與分配,我們的目標為最大化車隊中最慢車速。該研究開發了一個比較函式,將同一輛車發出的所有請求合併起來,以反映其實際駕駛狀況。之後,我們探索了各種類型的車輛調度演算法,以選擇合適的車輛並要求分配相應的服務。我們還提出了一種確保車隊運行安全的方法。車輛會根據各自的速度在整個模擬過程中動態調整車輛間距,從而保持彼此之間適當的安全距離。實驗結果顯示,在共享程度較低且計算資源有限的條件下,所提出的調度方法能夠實現更高的最小速度,同時在整個車隊中幾乎沒有平均速度損失。此外,所需的總時間均維持在可行範圍內,與實際運作約束條件良好契合。 | zh_TW |
| dc.description.abstract | In this thesis, we focus on the task selection and allocation in platoon cases for Connected and Autonomous Vehicles. Our objective is to maximize the speed of the slowest vehicle in a platoon. To achieve this objective, we develop a comparison function that unites all requests made by the same vehicle to reflect its actual driving condition. After that, we explore various types of vehicle scheduling algorithms that select the appropriate vehicle and request to allocate its corresponding services.
We also propose a method to ensure safety during platoon operation. Vehicles dynamically adjust their inter-vehicle distances throughout the simulation based on their respective speeds, maintaining appropriate safe distances between one another. Experimental results demonstrate that the proposed scheduling method achieves higher minimum speeds with little average speed loss across the entire platoon under conditions of low sharing levels and limited computational resources. In addition, the total time required remains within a practical range, aligning well with real-world operational constraints. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:06:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:06:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
Abstract (Chinese) iv Abstract v Table of Contents vi List of Figures viii List of Tables ix Chapter 1. Introduction 1 Chapter 2. Related Works 4 Chapter 3. Background 7 3.1 Request Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Request State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 4. System Modeling 10 4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 5. Approaches 13 5.1 Vehicle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Request Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 Service Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4 Vehicle State Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.5 Time Gap Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 6. Experimental Results 23 6.1 Highway Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 Manhattan Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.3 Experimental Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 7. Conclusion 29 Bibliography 30 | - |
| dc.language.iso | en | - |
| dc.subject | 聯網汽車 | zh_TW |
| dc.subject | 邊緣運算 | zh_TW |
| dc.subject | 服務選擇 | zh_TW |
| dc.subject | 調度 | zh_TW |
| dc.subject | Edge computing | en |
| dc.subject | Service selection | en |
| dc.subject | Connected vehicles | en |
| dc.subject | Scheduling | en |
| dc.title | 聯網車隊之邊緣服務選擇與排程 | zh_TW |
| dc.title | Edge-Service Selection and Scheduling for Platooning Connected Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黎士瑋;黃上恩;江蕙如 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Wei Li;Shang-En Huang;Hui-Ru Jiang | en |
| dc.subject.keyword | 聯網汽車,邊緣運算,服務選擇,調度, | zh_TW |
| dc.subject.keyword | Connected vehicles,Edge computing,Service selection,Scheduling, | en |
| dc.relation.page | 32 | - |
| dc.identifier.doi | 10.6342/NTU202502116 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| dc.date.embargo-lift | 2025-07-30 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
