Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98117
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林忠緯zh_TW
dc.contributor.advisorChung-Wei Linen
dc.contributor.author陳羿穎zh_TW
dc.contributor.authorYi-Ying Chenen
dc.date.accessioned2025-07-29T16:06:28Z-
dc.date.available2025-07-30-
dc.date.copyright2025-07-28-
dc.date.issued2025-
dc.date.submitted2025-07-22-
dc.identifier.citation[1] G. Afifi and B. Mokhtar, “Vehicular-computational resource geofencing: Efficient spatiotemporal uncertainty estimation,” IEEE Access, vol. 13, pp. 43 653– 43 665, 2025.
[2] Automotive Edge Computing Consortium, “White paper: Distributed computing in an aecc system,” Automotive Edge Computing Consortium (AECC), 2021.
[3] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware application scheduling in fog computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.
[4] S. Chen, L. Shi, X. Ding, Z. Lv, and Z. Li, “Energy efficient resource allocation and trajectory optimization in uav-assisted mobile edge computing system,” in International Conference on Big Data Computing and Communications, pp. 7–13, 2021.
[5] L. Ghiro, R. L. Cigno, E. Tonini, S. Fontana, and M. Segata, “Can platoons form on their own?” in IEEE Vehicular Networking Conference (VNC), pp.180–187, May 2024.
[6] K. Hayawi, J. Sajid, A. W. Malik, and S. S. Mathew, “Digital twin-assisted task offloading for workload management at fog nodes,” IEEE Internet of Things Journal, vol. 12, no. 13, pp. 23 061–23 072, 2025.
[7] J. Hu, C. Chen, L. Cai, M. R. Khosravi, Q. Pei, and S. Wan, “Uav-assisted vehicular edge computing for the 6g internet of vehicles: Architecture, intelligence, and challenges,” IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 12–18, 2021.
[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a key technology towards 5g,” ETSI White Paper, vol. 11, no. 11, pp. 1–16, 2015.
[9] Y. Hung, L.-K. Chou, H.-H. Tsai, H.-C. Wang, C.-W. Lin, and B. Kim, “Edgeassisted service allocation and delivery for connected vehicles with variable velocities,” in IEEE Vehicular Networking Conference (VNC), pp. 112–119, 2023.
[10] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and networking: A survey,” in Mobile Networks and Applications. Springer, 2021, pp. 1145–1168.
[11] A. Moradipari, S. S. Avedisov, and H. Lu, “Benefits of intent sharing in cooperative platooning,” in IEEE Vehicular Networking Conference (VNC), pp. 195–202, May 2024.
[12] H. Nguyen, S. Sharma, R. V. Prasad, and F. Dressler, “A multi-lane platooning paradigm with etsi dcc,” in IEEE Vehicular Networking Conference (VNC), pp. 219–222, May 2024.
[13] Z. Ning, P. Dong, X. Wang, J. Rodrigues, and F. Xia, “Deep reinforcement learning for vehicular edge computing: An intelligent offloading system,” ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 6, 2019.
[14] S. Park, C. Park, S. Jung, M. Choi, and J. Kim, “Age-of-information aware caching and delivery for infrastructure-assisted connected vehicles,” IEEE Transactions on Vehicular Technology, vol. 73, no. 7, pp. 10 681–10 696, 2024.
[15] PTV Planung Transport Verkehr AG, “PTV Vissim.” [Online]. Available: https://www.myptv.com/en/mobility-software/ptv-vissim.
[16] T. Soleymani, N. Yazdani, and S. P. Shariatpanahi, “Multi-level deep reinforcement learning-based edge caching strategies in vehicular networks,” in 11th International Symposium on Telecommunications (IST), pp. 690–696, 2024.
[17] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive learning-based task offloading for vehicular edge computing systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3061–3074, 2019.
[18] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu, “Deepreinforcement-learning-based offloading scheduling for vehicular edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5449–5465, 2020.
[19] Y. Zhao and B. Kim, “Optimizing allocation and scheduling of connected vehicle service requests in cloud/edge computing,” in IEEE International Conference on Cloud Computing, pp. 361–369, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98117-
dc.description.abstract本論文重點研究聯網自駕車隊的資源選擇與分配,我們的目標為最大化車隊中最慢車速。該研究開發了一個比較函式,將同一輛車發出的所有請求合併起來,以反映其實際駕駛狀況。之後,我們探索了各種類型的車輛調度演算法,以選擇合適的車輛並要求分配相應的服務。我們還提出了一種確保車隊運行安全的方法。車輛會根據各自的速度在整個模擬過程中動態調整車輛間距,從而保持彼此之間適當的安全距離。實驗結果顯示,在共享程度較低且計算資源有限的條件下,所提出的調度方法能夠實現更高的最小速度,同時在整個車隊中幾乎沒有平均速度損失。此外,所需的總時間均維持在可行範圍內,與實際運作約束條件良好契合。zh_TW
dc.description.abstractIn this thesis, we focus on the task selection and allocation in platoon cases for Connected and Autonomous Vehicles. Our objective is to maximize the speed of the slowest vehicle in a platoon. To achieve this objective, we develop a comparison function that unites all requests made by the same vehicle to reflect its actual driving condition. After that, we explore various types of vehicle scheduling algorithms that select the appropriate vehicle and request to allocate its corresponding services.
We also propose a method to ensure safety during platoon operation. Vehicles dynamically adjust their inter-vehicle distances throughout the simulation based on their respective speeds, maintaining appropriate safe distances between one another. Experimental results demonstrate that the proposed scheduling method achieves higher minimum speeds with little average speed loss across the entire platoon under conditions of low sharing levels and limited computational resources. In addition, the total time required remains within a practical range, aligning well with real-world operational constraints.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:06:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-29T16:06:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
Abstract (Chinese) iv
Abstract v
Table of Contents vi
List of Figures viii
List of Tables ix
Chapter 1. Introduction 1
Chapter 2. Related Works 4
Chapter 3. Background 7
3.1 Request Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Request State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 4. System Modeling 10
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 5. Approaches 13
5.1 Vehicle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Request Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Service Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Vehicle State Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Time Gap Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 6. Experimental Results 23
6.1 Highway Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Manhattan Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Experimental Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 7. Conclusion 29
Bibliography 30
-
dc.language.isoen-
dc.subject聯網汽車zh_TW
dc.subject邊緣運算zh_TW
dc.subject服務選擇zh_TW
dc.subject調度zh_TW
dc.subjectEdge computingen
dc.subjectService selectionen
dc.subjectConnected vehiclesen
dc.subjectSchedulingen
dc.title聯網車隊之邊緣服務選擇與排程zh_TW
dc.titleEdge-Service Selection and Scheduling for Platooning Connected Vehiclesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黎士瑋;黃上恩;江蕙如zh_TW
dc.contributor.oralexamcommitteeShih-Wei Li;Shang-En Huang;Hui-Ru Jiangen
dc.subject.keyword聯網汽車,邊緣運算,服務選擇,調度,zh_TW
dc.subject.keywordConnected vehicles,Edge computing,Service selection,Scheduling,en
dc.relation.page32-
dc.identifier.doi10.6342/NTU202502116-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
dc.date.embargo-lift2025-07-30-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved