請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游文岳 | zh_TW |
| dc.contributor.advisor | Wen-Yueh Yu | en |
| dc.contributor.author | 劉紫冰 | zh_TW |
| dc.contributor.author | Zhi Pin Law | en |
| dc.date.accessioned | 2025-07-29T16:05:03Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C.Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.-C. Roger, R. Amal, H. He, S.-E. Park, Industrial carbon dioxide capture and utilization: state of the art and future challenges, Chemical Society Reviews, 49 (2020) 8584-8686.
https://doi.org/10.1039/D0CS00025F [2] P.R.a.M.R. Hannah Ritchie, CO₂ and Greenhouse Gas Emissions. (accessed 10 February 2025) https://ourworldindata.org/co2-and-greenhouse-gas-emissions [3] Record carbon emissions highlight urgency of Global Greenhouse Gas Watch, World Meteorological Organization, 2024. https://doi.org/https://wmo.int/media/news/record-carbon-emissions-highlight-urgency-of-global-greenhouse-gas-watch [4] A. Rafiee, K. Rajab Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: A review from process systems perspective, Journal of Environmental Chemical Engineering, 6 (2018) 5771-5794. https://doi.org/https://doi.org/10.1016/j.jece.2018.08.065 [5] M. Yabushita, R. Fujii, Y. Nakagawa, K. Tomishige, Thermodynamic and Catalytic Insights into Non-Reductive Transformation of CO2 with Amines into Organic Urea Derivatives, ChemCatChem, 16 (2024) e202301342. https://doi.org/https://doi.org/10.1002/cctc.202301342 [6] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2, Chemical Reviews, 114 (2014) 1709-1742. https://doi.org/10.1021/cr4002758 [7] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chemical Society Reviews, 40 (2011) 3703-3727. https://doi.org/10.1039/C1CS15008A [8] A. Beck, M.A. Newton, L.G.A. van de Water, J.A. van Bokhoven, The Enigma of Methanol Synthesis by Cu/ZnO/Al2O3-Based Catalysts, Chemical Reviews, 124 (2024) 4543-4678. https://doi.org/10.1021/acs.chemrev.3c00148 [9] A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products – closing the loop, Chemical Society Reviews, 43 (2014) 7995-8048. https://doi.org/10.1039/C4CS00122B [10] Methanol Investor Presentation March 2024, Methanex Corporation. https://doi.org/https://www.methanex.com/wp-content/uploads/MEOH-Investor-Presentation-March-2024.pdf [11] J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment, Chemical Reviews, 118 (2018) 434-504. https://doi.org/10.1021/acs.chemrev.7b00435 [12] Y.-M. Liu, J.-T. Liu, S.-Z. Liu, J. Li, Z.-H. Gao, Z.-J. Zuo, W. Huang, Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111), Journal of CO2 Utilization, 20 (2017) 59-65. https://doi.org/https://doi.org/10.1016/j.jcou.2017.05.005 [13] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts, Science, 336 (2012) 893-897. https://doi.org/doi:10.1126/science.1219831 [14] K. Chang, T. Wang, J.G. Chen, Hydrogenation of CO2 to methanol over CuCeTiOx catalysts, Applied Catalysis B: Environmental, 206 (2017) 704-711. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.01.076 [15] A. Karelovic, P. Ruiz, The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts, Catalysis Science & Technology, 5 (2015) 869-881. https://doi.org/10.1039/C4CY00848K [16] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Journal of Catalysis, 298 (2013) 51-60. https://doi.org/https://doi.org/10.1016/j.jcat.2012.10.030 [17] M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R.W. Fischer, R. Schlögl, Performance Improvement of Nanocatalysts by Promoter-Induced Defects in the Support Material: Methanol Synthesis over Cu/ZnO:Al, Journal of the American Chemical Society, 135 (2013) 6061-6068. https://doi.org/10.1021/ja310456f [18] A.A. Kiss, J.J. Pragt, H.J. Vos, G. Bargeman, M.T. de Groot, Novel efficient process for methanol synthesis by CO2 hydrogenation, Chemical Engineering Journal, 284 (2016) 260-269. https://doi.org/10.1016/j.cej.2015.08.101 [19] S. Kattel, P. Liu, J.G. Chen, Tuning Selectivity of CO(2) Hydrogenation Reactions at the Metal/Oxide Interface, J Am Chem Soc, 139 (2017) 9739-9754. https://doi.org/10.1021/jacs.7b05362 [20] L.C. Grabow, M. Mavrikakis, Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation, ACS Catalysis, 1 (2011) 365-384. https://doi.org/10.1021/cs200055d [21] N. Tsubaki, M. Ito, K. Fujimoto, A New Method of Low-Temperature Methanol Synthesis, Journal of Catalysis, 197 (2001) 224-227. https://doi.org/10.1006/jcat.2000.3077 [22] R. Yang, Y. Fu, Y. Zhang, N. Tsubaki, In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO-containing syngas using ethanol promoter, Journal of Catalysis, 228 (2004) 23-35. https://doi.org/10.1016/j.jcat.2004.08.017 [23] Y. Jeong, I. Kim, J.Y. Kang, H. Jeong, J.K. Park, J.H. Park, J.C. Jung, Alcohol-assisted low temperature methanol synthesis from syngas over Cu/ZnO catalysts: Effect of pH value in the co-precipitation step, Journal of Molecular Catalysis A: Chemical, 400 (2015) 132-138. https://doi.org/https://doi.org/10.1016/j.molcata.2015.01.008 [24] Y. Jeong, I. Kim, J.Y. Kang, N. Yan, H. Jeong, J.K. Park, J.H. Park, J.C. Jung, Effect of the aging time of the precipitate on the activity of Cu/ZnO catalysts for alcohol-assisted low temperature methanol synthesis, Journal of Molecular Catalysis A: Chemical, 418-419 (2016) 168-174. https://doi.org/https://doi.org/10.1016/j.molcata.2016.03.044 [25] I. Kim, G. Lee, H. Jeong, J.H. Park, J.C. Jung, Bifunctionality of Cu/ZnO catalysts for alcohol-assisted low-temperature methanol synthesis from syngas: Effect of copper content, Journal of Energy Chemistry, 26 (2017) 373-379. https://doi.org/https://doi.org/10.1016/j.jechem.2017.02.003 [26] S. Likhittaphon, R. Panyadee, W. Fakyam, S. Charojrochkul, T. Sornchamni, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Effect of CuO/ZnO catalyst preparation condition on alcohol-assisted methanol synthesis from carbon dioxide and hydrogen, International Journal of Hydrogen Energy, 44 (2019) 20782-20791. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.07.021 [27] T. Boonamnuay, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Effect 3A and 5A molecular sieve on alcohol-assisted methanol synthesis from CO2 and H2 over Cu/ZnO catalyst, International Journal of Hydrogen Energy, 46 (2021) 30948-30958. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.04.161 [28] Y. Chen, S. Choi, L.T. Thompson, Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System, ACS Catalysis, 5 (2015) 1717-1725. https://doi.org/10.1021/cs501656x [29] J. Kothandaraman, D.J. Heldebrant, Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents, Green Chemistry, 22 (2020) 828-834. https://doi.org/10.1039/C9GC03449H [30] S. Xie, W. Zhang, C. Jia, S.S.G. Ong, C. Zhang, S. Zhang, H. Lin, Eliminating carbon dioxide emissions at the source by the integration of carbon dioxide capture and utilization over noble metals in the liquid phase, Journal of Catalysis, 389 (2020) 247-258. https://doi.org/https://doi.org/10.1016/j.jcat.2020.06.001 [31] Y. Jeong, J.Y. Kang, I. Kim, H. Jeong, J.K. Park, J.H. Park, J.C. Jung, Preparation of Cu/ZnO catalyst using a polyol method for alcohol-assisted low temperature methanol synthesis from syngas, Korean Journal of Chemical Engineering, 33 (2016) 114-119. https://doi.org/10.1007/s11814-015-0118-7 [32] S. Meesattham, P. Kim-Lohsoontorn, Low-temperature alcohol-assisted methanol synthesis from CO2 and H2: The effect of alcohol type, International Journal of Hydrogen Energy, 47 (2022) 22691-22703. https://doi.org/10.1016/j.ijhydene.2022.05.083 [33] Y. Chen, S. Choi, L.T. Thompson, Ethyl formate hydrogenolysis over Mo2C-based catalysts: Towards low temperature CO and CO2 hydrogenation to methanol, Catalysis Today, 259 (2016) 285-291. https://doi.org/https://doi.org/10.1016/j.cattod.2015.08.021 [34] H. Nieminen, G. Givirovskiy, A. Laari, T. Koiranen, Alcohol promoted methanol synthesis enhanced by adsorption of water and dual catalysts, Journal of CO2 Utilization, 24 (2018) 180-189. https://doi.org/https://doi.org/10.1016/j.jcou.2018.01.002 [35] J. Kothandaraman, R.A. Dagle, V.L. Dagle, S.D. Davidson, E.D. Walter, S.D. Burton, D.W. Hoyt, D.J. Heldebrant, Condensed-phase low temperature heterogeneous hydrogenation of CO2 to methanol, Catalysis Science & Technology, 8 (2018) 5098-5103. https://doi.org/10.1039/C8CY00997J [36] S. Hanukovich, A. Dang, P. Christopher, Influence of Metal Oxide Support Acid Sites on Cu-Catalyzed Nonoxidative Dehydrogenation of Ethanol to Acetaldehyde, ACS Catalysis, 9 (2019) 3537-3550. https://doi.org/10.1021/acscatal.8b05075 [37] S.W. Colley, J. Tabatabaei, K.C. Waugh, M.A. Wood, The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst, Journal of Catalysis, 236 (2005) 21-33. https://doi.org/https://doi.org/10.1016/j.jcat.2005.09.012 [38] R. Wu, K. Sun, Y. Chen, M. Zhang, L. Wang, Ethanol dimerization to Ethyl acetate and hydrogen on the multifaceted copper catalysts, Surface Science, 703 (2021) 121742. https://doi.org/https://doi.org/10.1016/j.susc.2020.121742 [39] T.K. Phung, Copper-based catalysts for ethanol dehydrogenation and dehydrogenative coupling into hydrogen, acetaldehyde and ethyl acetate, International Journal of Hydrogen Energy, 47 (2022) 42234-42249. https://doi.org/10.1016/j.ijhydene.2021.11.253 [40] N.D. Nielsen, A.D. Jensen, J.M. Christensen, The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts, Journal of Catalysis, 393 (2021) 324-334. https://doi.org/https://doi.org/10.1016/j.jcat.2020.11.035 [41] M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, M. Muhler, Deactivation of Supported Copper Catalysts for Methanol Synthesis, Catalysis Letters, 86 (2003) 77-80. https://doi.org/10.1023/A:1022663125977 [42] S. Chang, W. Na, J. Zhang, L. Lin, W. Gao, Effect of the Zn/Ce ratio in Cu/ZnO–CeO2 catalysts on CO2 hydrogenation for methanol synthesis, New Journal of Chemistry, 45 (2021) 22814-22823. https://doi.org/10.1039/D1NJ04951H [43] P. Min, S. Zhang, Y. Xu, R. Li, Enhanced oxygen storage capacity of CeO2 with doping-induced unstable crystal structure, Applied Surface Science, 448 (2018) 435-443. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.04.103 [44] R. Ye, L. Ma, J. Mao, X. Wang, X. Hong, A. Gallo, Y. Ma, W. Luo, B. Wang, R. Zhang, M.S. Duyar, Z. Jiang, J. Liu, A Ce-CuZn catalyst with abundant Cu/Zn-O(V)-Ce active sites for CO(2) hydrogenation to methanol, Nat Commun, 15 (2024) 2159. https://doi.org/10.1038/s41467-024-46513-3 [45] J. Zhu, Y. Su, J. Chai, V. Muravev, N. Kosinov, E.J.M. Hensen, Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO2 on Cu/CeO2, ACS Catalysis, 10 (2020) 11532-11544. https://doi.org/10.1021/acscatal.0c02909 [46] H.-X. Liu, S.-Q. Li, W.-W. Wang, W.-Z. Yu, W.-J. Zhang, C. Ma, C.-J. Jia, Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction, Nature Communications, 13 (2022) 867. https://doi.org/10.1038/s41467-022-28476-5 [47] R. Singh, K. Kundu, K.K. Pant, CO2 hydrogenation to methanol over Cu-ZnO-CeO2 catalyst: Reaction structure–activity relationship, optimizing Ce and Zn ratio, and kinetic study, Chemical Engineering Journal, 479 (2024) 147783. https://doi.org/https://doi.org/10.1016/j.cej.2023.147783 [48] A. Chen, X. Yu, Y. Zhou, S. Miao, Y. Li, S. Kuld, J. Sehested, J. Liu, T. Aoki, S. Hong, M.F. Camellone, S. Fabris, J. Ning, C. Jin, C. Yang, A. Nefedov, C. Wöll, Y. Wang, W. Shen, Structure of the catalytically active copper–ceria interfacial perimeter, Nature Catalysis, 2 (2019) 334-341. https://doi.org/10.1038/s41929-019-0226-6 [49] J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G. Chen, Hydrogenation of CO2 to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO2, ACS Catalysis, 5 (2015) 6696-6706. https://doi.org/10.1021/acscatal.5b01755 [50] Y. Yu, Z. Bian, Z. Wang, J. Wang, W. Tan, Q. Zhong, S. Kawi, CO2 methanation on Ni-Ce0.8M0.2O2 (M=Zr, Sn or Ti) catalyst: Suppression of CO via formation of bridging carbonyls on nickel, Catalysis Today, 424 (2023) 113053. https://doi.org/https://doi.org/10.1016/j.cattod.2020.07.049 [51] T. Phongamwong, U. Chantaprasertporn, T. Witoon, T. Numpilai, Y. Poo-arporn, W. Limphirat, W. Donphai, P. Dittanet, M. Chareonpanich, J. Limtrakul, CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contents, Chemical Engineering Journal, 316 (2017) 692-703. https://doi.org/https://doi.org/10.1016/j.cej.2017.02.010 [52] W. Wang, Z. Qu, L. Song, Q. Fu, CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction, Journal of Energy Chemistry, 40 (2020) 22-30. https://doi.org/https://doi.org/10.1016/j.jechem.2019.03.001 [53] G. Noh, E. Lam, D.T. Bregante, J. Meyet, P. Šot, D.W. Flaherty, C. Copéret, Lewis Acid Strength of Interfacial Metal Sites Drives CH3OH Selectivity and Formation Rates on Cu-Based CO2 Hydrogenation Catalysts, Angewandte Chemie International Edition, 60 (2021) 9650-9659. https://doi.org/https://doi.org/10.1002/anie.202100672 [54] J. Zhu, D. Ciolca, L. Liu, A. Parastaev, N. Kosinov, E.J.M. Hensen, Flame Synthesis of Cu/ZnO-CeO(2) Catalysts: Synergistic Metal-Support Interactions Promote CH(3)OH Selectivity in CO(2) Hydrogenation, ACS Catal, 11 (2021) 4880-4892. https://doi.org/10.1021/acscatal.1c00131 [55] T. Takeguchi, S. Manabe, R. Kikuchi, K. Eguchi, T. Kanazawa, S. Matsumoto, W. Ueda, Determination of dispersion of precious metals on CeO2-containing supports, Applied Catalysis A: General, 293 (2005) 91-96. https://doi.org/https://doi.org/10.1016/j.apcata.2005.07.013 [56] T. Shido, Y. Iwasawa, Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis, Journal of Catalysis, 129 (1991) 343-355. https://doi.org/https://doi.org/10.1016/0021-9517(91)90040-B [57] J.F. Edwards, G.L. Schrader, In situ fourier transform infrared study of methanol synthesis on mixed metal oxide catalysts, Journal of Catalysis, 94 (1985) 175-186. https://doi.org/https://doi.org/10.1016/0021-9517(85)90093-4 [58] Z.-J. Gong, Y.-R. Li, H.-L. Wu, S.D. Lin, W.-Y. Yu, Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst, Applied Catalysis B: Environmental, 265 (2020) 118524. https://doi.org/https://doi.org/10.1016/j.apcatb.2019.118524 [59] G.N. Vayssilov, M. Mihaylov, P.S. Petkov, K.I. Hadjiivanov, K.M. Neyman, Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation, The Journal of Physical Chemistry C, 115 (2011) 23435-23454. https://doi.org/10.1021/jp208050a [60] C. Li, Y. Sakata, T. Arai, K. Domen, K.-i. Maruya, T. Onishi, Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.—Formation of carbonate species on dehydroxylated CeO2, at room temperature, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85 (1989) 929-943. https://doi.org/10.1039/F19898500929 [61] Y. Zhang, L. Liang, Z. Chen, J. Wen, W. Zhong, S. Zou, M. Fu, L. Chen, D. Ye, Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS, Applied Surface Science, 516 (2020) 146035. https://doi.org/https://doi.org/10.1016/j.apsusc.2020.146035 [62] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis, 237 (2006) 1-16. https://doi.org/https://doi.org/10.1016/j.jcat.2005.10.014 [63] K. Mudiyanselage, A.E. Baber, Z. Liu, S.D. Senanayake, D.J. Stacchiola, Isolation and characterization of formates on CeOx–CuyO/Cu(111), Catalysis Today, 240 (2015) 190-200. https://doi.org/https://doi.org/10.1016/j.cattod.2014.06.001 [64] S.M. Fehr, K. Nguyen, I. Krossing, Realistic Operando-DRIFTS Studies on Cu/ZnO Catalysts for CO2 Hydrogenation to Methanol – Direct Observation of Mono-ionized Defect Sites and Implications for Reaction Intermediates, ChemCatChem, 14 (2022) e202101500. https://doi.org/https://doi.org/10.1002/cctc.202101500 [65] A.I.M. Rabee, H. Abed, T.H. Vuong, S. Bartling, L. Kraußer, H. Atia, N. Rockstroh, E.V. Kondratenko, A. Brückner, J. Rabeah, CeO2-Supported Single-Atom Cu Catalysts Modified with Fe for RWGS Reaction: Deciphering the Role of Fe in the Reaction Mechanism by In Situ/Operando Spectroscopic Techniques, ACS Catalysis, 14 (2024) 10913-10927. https://doi.org/10.1021/acscatal.4c01493 [66] A. Yee, S.J. Morrison, H. Idriss, The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2, Catalysis Today, 63 (2000) 327-335. https://doi.org/https://doi.org/10.1016/S0920-5861(00)00476-4 [67] M.H. Brijaldo, H.A. Rojas, J.J. Martínez, F.B. Passos, Effect of support on acetic acid decomposition over palladium catalysts, Journal of Catalysis, 331 (2015) 63-75. https://doi.org/https://doi.org/10.1016/j.jcat.2015.08.019 [68] S.W. Charles, G.I.L. Jones, N.L. Owen, S.J. Cyvin, B.N. Cyvin, The vibrational spectra, rotational isomerism, normal coordinate analysis and mean amplitudes of ethyl formate, ethyl chloroformate and ethyl cyanoform, Journal of Molecular Structure, 16 (1973) 225-257. https://doi.org/https://doi.org/10.1016/0022-2860(73)80064-X [69] D.M. Monti, N.W. Cant, D.L. Trimm, M.S. Wainwright, Hydrogenolysis of methyl formate over copper on silica: II. Study of the mechanism using labeled compounds, Journal of Catalysis, 100 (1986) 28-38. https://doi.org/https://doi.org/10.1016/0021-9517(86)90068-0 [70] J. Kim, B.B. Sarma, E. Andrés, N. Pfänder, P. Concepción, G. Prieto, Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles, ACS Catalysis, 9 (2019) 10409-10417. https://doi.org/10.1021/acscatal.9b02412 [71] S.D. Senanayake, P.J. Ramírez, I. Waluyo, S. Kundu, K. Mudiyanselage, Z. Liu, Z. Liu, S. Axnanda, D.J. Stacchiola, J. Evans, J.A. Rodriguez, Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce3+ Sites, The Journal of Physical Chemistry C, 120 (2016) 1778-1784. https://doi.org/10.1021/acs.jpcc.5b12012 [72] J. Zhang, K. Shi, Y. Zhu, Z. An, W. Wang, X. Ma, X. Shu, H. Song, X. Xiang, J. He, Interfacial Sites in Ag Supported Layered Double Oxide for Dehydrogenation Coupling of Ethanol to n-Butanol, ChemistryOpen, 10 (2021) 1095-1103. https://doi.org/https://doi.org/10.1002/open.202000295 [73] H. Idriss, C. Diagne, J.P. Hindermann, A. Kiennemann, M.A. Barteau, Reactions of Acetaldehyde on CeO2 and CeO2-Supported Catalysts, Journal of Catalysis, 155 (1995) 219-237. https://doi.org/https://doi.org/10.1006/jcat.1995.1205 [74] M. Kourtelesis, T.S. Moraes, L.V. Mattos, D.K. Niakolas, F.B. Noronha, X. Verykios, The effects of support morphology on the performance of Pt/CeO2 catalysts for the low temperature steam reforming of ethanol, Applied Catalysis B: Environmental, 284 (2021) 119757. https://doi.org/https://doi.org/10.1016/j.apcatb.2020.119757 [75] J.R. Jensen, T. Johannessen, H. Livbjerg, An improved N2O-method for measuring Cu-dispersion, Applied Catalysis A: General, 266 (2004) 117-122. https://doi.org/https://doi.org/10.1016/j.apcata.2004.02.009 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98111 | - |
| dc.description.abstract | 本研究旨在探討乙醇輔助二氧化碳(CO2)氫化低溫合成甲醇之反應機制。所使用之觸媒為以共沉澱法製備的CuZnCeOx系列觸媒。研究表明,甲酸乙酯(EtFm)為關鍵中間體,係由CO2與H2生成的甲酸根與催化溶劑乙醇反應形成。該中間體經加氫裂解(hydrogenolysis)可快速轉化為甲醇,從而降低CO2氫化合成甲醇的反應溫度。鑒於過去研究多以銅鋅氧化物作為觸媒,本研究引入鈰(Ce)作為促進劑,探討其對與甲醇產率及選擇率之影響。
觸媒活性測試結果顯示,相較於CuZnO,部分以Ce取代Zn可提升EtFm及甲醇的生成量。透過調控Ce與Zn的比例,本研究進一步釐清兩者在反應中的角色。Ce有助於促進EtFm的生成,惟過量的Ce則會抑制其後續轉化為甲醇;相對的,Zn則可有效促進EtFm經由氫解反應生成甲醇。研究結果顯示,適量添加Ce不僅有助於中間體EtFm的生成,亦能兼顧其高效轉化,進一步提升甲醇之產率與選擇率。 本研究使用原位擴散反射紅外線傅立葉轉換光譜(in-situ DRIFTS)技術,探討Ce與Zn在反應機制中所扮演的角色。光譜結果顯示,乙酸乙酯(EtFm)在CuZnO上的訊號較弱且持續時間短,顯示其吸附較弱並易於轉化;相對地,在CuCeO₂上則觀察到較強且持續時間較長的EtFm吸附訊號,顯示其在表面具有較強的吸附力。根據這些觀察,推論EtFm在Ce含量較高的觸媒上傾向以單點氧(η¹-O)模式吸附於表面,造成氫解反應受阻,進而降低其轉化效率;而Zn含量較高的觸媒則促進EtFm以雙點碳氧(η²-(C,O))模式吸附,有助於羰基活化,進一步與銅表面解離之氫反應,有效轉化為甲醇。 綜上所述,本研究指出促進劑表面之吸附結構為影響觸媒性能的關鍵因素,並提出可藉由調控觸媒組成,達成提升甲醇生成效率、抑制副反應之設計準則,對推動高效、低溫CO2氫化生成甲醇製程的發展具有實質貢獻。 | zh_TW |
| dc.description.abstract | This study investigates ethanol (EtOH)-assisted CO2 hydrogenation for low-temperature methanol (MeOH) synthesis using a series of CuZnCeOx catalysts synthesized via the co-precipitation method. Ethyl formate (EtFm) is identified as a key intermediate, formed through the reaction between formate species (derived from CO2 and H2) and EtOH, which serves as a catalytic solvent. Subsequent hydrogenolysis of EtFm enables MeOH production at temperatures lower than those required for conventional CO2 hydrogenation. While previous studies have focused primarily on CuZnO system, this work introduces cerium (Ce) as a promoter aimed at improving MeOH yield and selectivity.
Catalytic testing demonstrated that partial substitution of Zn with Ce markedly increases EtFm formation and concurrently boosts MeOH yield compared to CuZnO. Systematic variation of the Ce/(Ce+Zn) ratio revealed bifunctional behavior: Ce promotes EtFm generation but excessive Ce content shows inhibitory effect in EtFm conversion, whereas Zn effectively converts EtFm into MeOH via hydrogenolysis. An optimal Ce/Zn ratio was identified, achieving a balance between intermediate formation and conversion, resulting in the optimal MeOH yield and selectivity. Based on the results of in-situ DRIFT spectroscopy, this study proposes that the adsorption configuration of ethyl formate (EtFm) on the catalyst surface is a key factor governing the distinct catalytic behaviors. Spectral observations revealed that the EtFm signal on CuZnO was relatively weak and short-lived, suggesting weak adsorption and facile conversion. In contrast, CuCeO₂ exhibited a stronger and more persistent EtFm signal, indicating stronger surface binding. These differences imply that EtFm is preferentially stabilized in an η¹-O adsorption geometry on Ce-rich catalysts, which inhibits hydrogenolysis to methanol (MeOH). Conversely, Zn-rich catalysts promote an η²-(C,O) adsorption mode that facilitates C=O activation and enables effective conversion to MeOH via surface hydrogen species. These findings underscore the crucial role of adsorption geometry in determining reaction pathways and product selectivity. This work offers valuable design principles for optimizing Cu-based catalysts in alcohol-assisted CO2 hydrogenation, paving the way for efficient, low-temperature MeOH synthesis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:05:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:05:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | MASTER THESIS ACCEPTANCE CERTIFICATE i
致謝 ii 摘要 iv ABSTRACT v TABLE OF CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xii LIST OF APPENDICES xiii CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.1.1 CO2 Utilization 1 1.1.2 CO2 Hydrogenation for Methanol Synthesis 3 1.2 Alcohol-Assisted CO2 Hydrogenation for Methanol Synthesis 6 1.3 Alcohol Dehydrogenation as Side Reactions 10 1.4 Research Objectives 13 CHAPTER 2 METHODOLOGY 15 2.1 Chemicals and Reagents 15 2.2 Catalyst Preparation 16 2.3 Catalytic Activity Test and Product Characterization 18 2.3.1 Reaction System 18 2.3.2 Gas Chromatography with Flame Ionization Detector (GC-FID) 20 2.3.3 Gas Chromatography with Thermal Conductivity Detector (GC-TCD) 23 2.4 Catalyst Characterization 26 2.4.1 X-ray Diffraction (XRD) 26 2.4.2 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 27 2.4.3 Accelerated Surface Area and Porosimetry (ASAP) 29 2.4.4 Transmission Electron Microscopy (TEM) 30 2.4.5 Hydrogen Temperature Programmed Reduction (H2-TPR) 31 2.4.6 Carbon Dioxide and Ammonia Temperature Programmed Desorption (CO2-TPD & NH3-TPD) 32 2.4.7 N2O Titration 34 2.4.8 Infrared Spectroscopy (IR) 37 CHAPTER 3 RESULTS AND DISCUSSION 39 3.1 Catalyst Characterization 39 3.1.1 H2-Temperature Programmed Reduction (H2-TPR) 39 3.1.2 X-ray Diffraction (XRD) 42 3.1.3 Physicochemical Properties 43 3.1.4 Surface Oxygen Vacancies and Cu Dispersion 51 3.2 Catalytic Activity Test 53 3.2.1 Comparison between CuZnO and CuCeO2 53 3.2.2 Catalytic Performance with Different Ce Loading 57 3.3 IR Spectroscopy – Impact of Ce Incorporation on Product Selectivity 61 3.3.1 Carbonate and Formate Species on Catalyst Surface 61 3.3.2 In-situ Reaction of Formate with Ethanol 67 3.4 RWGS and Alcohol-Dependent Side Reactions 73 CHAPTER 4 CONCLUSION 78 CHAPTER 5 FUTURE WORK 80 REFERENCES 81 APPENDICES 90 | - |
| dc.language.iso | en | - |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 甲醇 | zh_TW |
| dc.subject | 銅觸媒 | zh_TW |
| dc.subject | 鈰 | zh_TW |
| dc.subject | 紅外線光譜 | zh_TW |
| dc.subject | infrared spectroscopy | en |
| dc.subject | carbon dioxide | en |
| dc.subject | methanol | en |
| dc.subject | cerium | en |
| dc.subject | copper catalysts | en |
| dc.title | 醇類輔助低溫二氧化碳氫化生成甲醇:觸媒研發及反應機制探討 | zh_TW |
| dc.title | Low-Temperature Methanol Synthesis via Alcohol-Assisted CO2 Hydrogenation: Catalyst Development and Mechanistic Investigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳紀聖;李奕霈;陳靖天 | zh_TW |
| dc.contributor.oralexamcommittee | Jeffrey Chi-Sheng Wu;Yi-Pei Li;Ching-Tien Chen | en |
| dc.subject.keyword | 二氧化碳,甲醇,銅觸媒,鈰,紅外線光譜, | zh_TW |
| dc.subject.keyword | carbon dioxide,methanol,copper catalysts,cerium,infrared spectroscopy, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202502278 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-30 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
