Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟zh_TW
dc.contributor.advisorJaw-Lin Wangen
dc.contributor.author陳維貞zh_TW
dc.contributor.authorWei-Chen Chenen
dc.date.accessioned2025-07-25T16:05:05Z-
dc.date.available2025-07-26-
dc.date.copyright2025-07-25-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation1. Smith, D.W., et al., Introduction to Articular Cartilage, in Articular Cartilage Dynamics, D.W. Smith, et al., Editors. 2019, Springer Singapore: Singapore. p. 1-63.
2. Chen, H., et al., Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front Cell Dev Biol, 2021. 9: p. 664168.
3. Hjelle, K., et al., Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy, 2002. 18(7): p. 730-4.
4. Liu, Y., K.M. Shah, and J. Luo, Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol, 2021. 9: p. 770655.
5. Wilder, F.V., et al., History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. The Clearwater Osteoarthritis Study. Osteoarthritis Cartilage, 2002. 10(8): p. 611-6.
6. Society, I.C.R.J.P. The ICRS Clinical Cartilage Injury Evaluation system 2000; Available from: https://cartilage.org/icrs-score-grade/.
7. Hayes, D.W., Jr., R.L. Brower, and K.J. John, Articular cartilage. Anatomy, injury, and repair. Clin Podiatr Med Surg, 2001. 18(1): p. 35-53.
8. Gratz, K.R., et al., The effects of focal articular defects on cartilage contact mechanics. J Orthop Res, 2009. 27(5): p. 584-92.
9. Deschner, J., et al., Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care, 2003. 6(3): p. 289-93.
10. Kwon, H., et al., Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 2019. 15(9): p. 550-570.
11. Armiento, A.R., M. Alini, and M.J. Stoddart, Articular fibrocartilage - Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev, 2019. 146: p. 289-305.
12. Benya, P.D. and J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982. 30(1): p. 215-24.
13. Wei, P. and R. Bao, Intra-Articular Mesenchymal Stem Cell Injection for Knee Osteoarthritis: Mechanisms and Clinical Evidence. Int J Mol Sci, 2022. 24(1).
14. Kim, Y.G., J. Choi, and K. Kim, Mesenchymal Stem Cell-Derived Exosomes for Effective Cartilage Tissue Repair and Treatment of Osteoarthritis. Biotechnol J, 2020. 15(12): p. e2000082.
15. Wong, K.L., et al., Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy, 2013. 29(12): p. 2020-8.
16. Yang, S., Y. Sun, and C. Yan, Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology, 2024. 22(1): p. 316.
17. Korstjens, C.M., et al., Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med Biol Eng Comput, 2008. 46(12): p. 1263-70.
18. Rothenberg, J.B., et al., The Role of Low-Intensity Pulsed Ultrasound on Cartilage Healing in Knee Osteoarthritis: A Review. Pm r, 2017. 9(12): p. 1268-1277.
19. Uddin, S.M.Z., et al., Low-Intensity Continuous Ultrasound Therapies-A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med, 2021. 10(12).
20. Ulrich-Vinther, M., et al., Articular Cartilage Biology. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 2003. 11(6): p. 421-430.
21. Howell, D.S., Biology of Cartilage Cells. R. A. Stockwell. Cambridge, Cambridge University Press, 1979. 329 pages; illustrated. Arthritis & Rheumatism, 1980. 23(8): p. 964-965.
22. Sophia Fox, A.J., A. Bedi, and S.A. Rodeo, The basic science of articular cartilage: structure, composition, and function. Sports Health, 2009. 1(6): p. 461-8.
23. Gahunia, H.K. and K.P.H. Pritzker, Structure and Function of Articular Cartilage, in Articular Cartilage of the Knee: Health, Disease and Therapy, H.K. Gahunia, et al., Editors. 2020, Springer New York: New York, NY. p. 3-70.
24. Carballo, C.B., et al., Basic Science of Articular Cartilage. Clin Sports Med, 2017. 36(3): p. 413-425.
25. Mow, V.C., A. Ratcliffe, and A. Robin Poole, Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials, 1992. 13(2): p. 67-97.
26. Urban, J.P., The chondrocyte: a cell under pressure. Br J Rheumatol, 1994. 33(10): p. 901-8.
27. Archer, C.W. and P. Francis-West, The chondrocyte. The International Journal of Biochemistry & Cell Biology, 2003. 35(4): p. 401-404.
28. Akkiraju, H. and A. Nohe, Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J Dev Biol, 2015. 3(4): p. 177-192.
29. Bhosale, A.M. and J.B. Richardson, Articular cartilage: structure, injuries and review of management. Br Med Bull, 2008. 87: p. 77-95.
30. Liu, Y., et al., The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin (Shanghai), 2023. 55(5): p. 701-712.
31. Whitney, N.P., et al., Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol, 2012. 38(10): p. 1734-43.
32. Hasanova, G.I., et al., The effect of ultrasound stimulation on the gene and protein expression of chondrocytes seeded in chitosan scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2011. 5(10): p. 815-822.
33. Parvizi, J., et al., Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res, 1999. 17(4): p. 488-94.
34. Noriega, S., et al., Intermittent applications of continuous ultrasound on the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng, 2007. 13(3): p. 611-8.
35. Lee, W., et al., Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A, 2014. 111(47): p. E5114-22.
36. Lin, S.S., et al., Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A, 2014. 111(19): p. E1990-8.
37. Ponce, A., et al., Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int J Mol Sci, 2024. 25(14).
38. Strehl, R., et al., Proliferating Cells versus Differentiated Cells in Tissue Engineering. Tissue Engineering, 2002. 8(1): p. 37-42.
39. Garcia, A.M. and M.L. Gray, Dimensional growth and extracellular matrix accumulation by neonatal rat mandibular condyles in long-term culture. J Orthop Res, 1995. 13(2): p. 208-19.
40. Angelozzi, M., et al., Dedifferentiated Chondrocytes in Composite Microfibers As Tool for Cartilage Repair. Front Bioeng Biotechnol, 2017. 5: p. 35.
41. Liau, L.L., et al., Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci, 2021. 22(3).
42. De Angelis, E., et al., Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci, 2020. 133: p. 98-105.
43. Zhang, L., H. Song, and X. Zhao, Optimum combination of insulin-transferrin-selenium and fetal bovine serum for culture of rabbit articular chondrocytes in three-dimensional alginate scaffolds. Int J Cell Biol, 2009. 2009: p. 747016.
44. Liu, X., et al., Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro. Int J Mol Sci, 2014. 15(1): p. 1525-37.
45. Chua, K.H., et al., Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater, 2005. 9: p. 58-67; discussion 67.
46. Song, H. and K.H. Park, Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol, 2020. 67(Pt 1): p. 12-23.
47. Akiyama, H., et al., The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev, 2002. 16(21): p. 2813-28.
48. Bi, W., et al., Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proceedings of the National Academy of Sciences, 2001. 98(12): p. 6698-6703.
49. Haseeb, A., et al., SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A, 2021. 118(8).
50. Bell, D.M., et al., SOX9 directly regulates the type-II collagen gene. Nat Genet, 1997. 16(2): p. 174-8.
51. Sekiya, I., et al., SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem, 2000. 275(15): p. 10738-44.
52. Nabavizadeh, S.S., et al., Attenuation of osteoarthritis progression through intra-articular injection of a combination of synovial membrane-derived MSCs (SMMSCs), platelet-rich plasma (PRP) and conditioned medium (secretome). J Orthop Surg Res, 2022. 17(1): p. 102.
53. Cucchiarini, M., et al., Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum, 2007. 56(1): p. 158-67.
54. Zhang, X., et al., Long-term durable repaired cartilage induced by SOX9 in situ with bone marrow-derived mesenchymal stem cells. Int J Med Sci, 2021. 18(6): p. 1399-1405.
55. Takahashi, I., et al., Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci, 1998. 111 ( Pt 14): p. 2067-76.
56. Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annu Rev Biochem, 2009. 78: p. 929-58.
57. Gelse, K., E. Poschl, and T. Aigner, Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev, 2003. 55(12): p. 1531-46.
58. Thorp, H., et al., Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells, 2021. 10(3).
59. Simon, T.M. and D.W. Jackson, Articular Cartilage: Injury Pathways and Treatment Options. Sports Medicine and Arthroscopy Review, 2018. 26(1).
60. Sherwood, J.C., et al., Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today, 2014. 19(8): p. 1172-7.
61. Yang, S., et al., Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med, 2010. 16(6): p. 687-93.
62. Deberg, M., et al., New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage, 2005. 13(3): p. 258-65.
63. Tien, Y.C., et al., Effects of pulsed low-intensity ultrasound on human child chondrocytes. Ultrasound Med Biol, 2008. 34(7): p. 1174-81.
64. Zhang, Z.J., et al., The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol, 2003. 29(11): p. 1645-51.
65. Ulrich-Vinther, M., et al., Articular Cartilage Biology. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 2003. 11(6).
66. Kiani, C., et al., Structure and function of aggrecan. Cell Research, 2002. 12(1): p. 19-32.
67. Roughley, P.J. and J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage. Journal of Experimental Orthopaedics, 2014. 1(1): p. 8.
68. Bara, J.J., et al., Articular cartilage glycosaminoglycans inhibit the adhesion of endothelial cells. Connect Tissue Res, 2012. 53(3): p. 220-8.
69. Zhang, Z.i.-J., et al., The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. Ultrasound in Medicine & Biology, 2002. 28(11): p. 1547-1553.
70. Schmid, T.M. and T.F. Linsenmayer, Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol, 1985. 100(2): p. 598-605.
71. Shen, G., The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 2005. 8(1): p. 11-7.
72. Carroll, R.S., et al., Collagen X Marker Levels are Decreased in Individuals with Achondroplasia. Calcif Tissue Int, 2022. 111(1): p. 66-72.
73. Aigner, T., et al., Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Archiv B, 1993. 63(1): p. 205-211.
74. Hoyland, J.A., et al., Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone and Mineral, 1991. 15(2): p. 151-163.
75. Neumann, D. and E. Kollorz, Ultrasound, in Medical Imaging Systems: An Introductory Guide, A. Maier, et al., Editors. 2018: Cham (CH). p. 237-49.
76. Handolin, L., et al., The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly l-lactide screws. Biomaterials, 2002. 23(13): p. 2733-2736.
77. ter Haar, G., Therapeutic ultrasound. European Journal of Ultrasound, 1999. 9(1): p. 3-9.
78. Pounder, N.M. and A.J. Harrison, Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics, 2008. 48(4): p. 330-8.
79. Khanna, A., et al., The effects of LIPUS on soft-tissue healing: a review of literature. Br Med Bull, 2009. 89: p. 169-82.
80. Tidball, J.G. and S.A. Villalta, Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol, 2010. 298(5): p. R1173-87.
81. Harvey, E.N., THE EFFECT OF HIGH FREQUENCY SOUND WAVES ON HEART MUSCLE AND OTHER IRRITABLE TISSUES. American Journal of Physiology, 1929. 91: p. 284-290.
82. Fomenko, A., et al., Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain Stimul, 2018. 11(6): p. 1209-1217.
83. Nelson, T.R., et al., Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med, 2009. 28(2): p. 139-50.
84. Best, T.M., et al., Low Intensity Ultrasound for Promoting Soft Tissue Healing: A Systematic Review of the Literature and Medical Technology. Intern Med Rev (Wash D C), 2016. 2(11).
85. Zhang, Z.-J., et al., The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound in Medicine & Biology, 2003. 29(11): p. 1645-1651.
86. Oliveira, S., et al., Effects and mechanotransduction pathways of therapeutic ultrasound on healthy and osteoarthritic chondrocytes: a systematic review of in vitro studies. Osteoarthritis Cartilage, 2023. 31(3): p. 317-339.
87. Ito, A., et al., Low-intensity pulsed ultrasound inhibits messenger RNA expression of matrix metalloproteinase-13 induced by interleukin-1beta in chondrocytes in an intensity-dependent manner. Ultrasound Med Biol, 2012. 38(10): p. 1726-33.
88. Sabanci, S., et al., The effectiveness of therapeutic ultrasound to the mechanically damaged chondrocyte culture. Physiother Theory Pract, 2024. 40(1): p. 21-30.
89. Subramanian, A., et al., Continuous Low-Intensity Ultrasound Improves Cartilage Repair in Rabbit Model of Subchondral Injury. Tissue Eng Part A, 2024. 30(7-8): p. 357-366.
90. Cook, S.D., et al., Improved Cartilage Repair After Treatment With Low-Intensity Pulsed Ultrasound. Clinical Orthopaedics and Related Research®, 2001. 391.
91. Naito, K., et al., Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model. J Orthop Res, 2010. 28(3): p. 361-9.
92. Li, X., et al., Effect of low-intensity pulsed ultrasound on MMP-13 and MAPKs signaling pathway in rabbit knee osteoarthritis. Cell Biochem Biophys, 2011. 61(2): p. 427-34.
93. Kamel, N.A., Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophys Rev, 2022. 14(3): p. 717-733.
94. Bunde, R.L., E.J. Jarvi, and J.J. Rosentreter, Piezoelectric quartz crystal biosensors. Talanta, 1998. 46(6): p. 1223-1236.
95. Maestre, S. What is Piezoelectric Effect? 2022; Available from: https://www.circuitbread.com/ee-faq/what-is-piezoelectric-effect.
96. Ferreira, A.M., et al., Collagen for bone tissue regeneration. Acta Biomater, 2012. 8(9): p. 3191-200.
97. Fukada, E., History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000. 47(6): p. 1277-1290.
98. Huang, H., et al., Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate. J Orthop Translat, 2025. 51: p. 94-107.
99. Jacob, J., et al., Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen, 2018. 38: p. 2.
100. Sekino, J., et al., Low-intensity pulsed ultrasound induces cartilage matrix synthesis and reduced MMP13 expression in chondrocytes. Biochem Biophys Res Commun, 2018. 506(1): p. 290-297.
101. Matsuoka, M., et al., An Articular Cartilage Repair Model in Common C57Bl/6 Mice. Tissue Engineering Part C: Methods, 2015. 21(8): p. 767-772.
102. Wakitani, S., et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994. 76(4): p. 579-92.
103. Hasanova, G.I., et al., The effect of ultrasound stimulation on the gene and protein expression of chondrocytes seeded in chitosan scaffolds. J Tissue Eng Regen Med, 2011. 5(10): p. 815-22.
104. Xia, P., et al., Low-Intensity Pulsed Ultrasound Affects Chondrocyte Extracellular Matrix Production via an Integrin-Mediated p38 MAPK Signaling Pathway. Ultrasound Med Biol, 2015. 41(6): p. 1690-700.
105. Ding, W., D. Du, and S. Chen, LIPUS promotes synthesis and secretion of extracellular matrix and reduces cell apoptosis in human osteoarthritis through upregulation of SOX9 expression. Int J Clin Exp Pathol, 2020. 13(4): p. 810-817.
106. Lefebvre, V. and M. Dvir-Ginzberg, SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res, 2017. 58(1): p. 2-14.
107. Chu, C.R., M. Szczodry, and S. Bruno, Animal Models for Cartilage Regeneration and Repair. Tissue Engineering Part B: Reviews, 2009. 16(1): p. 105-115.
108. Pratta, M.A., et al., Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem, 2003. 278(46): p. 45539-45.
109. Eltawil, N.M., et al., A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage, 2009. 17(6): p. 695-704.
110. Zheng, Q., et al., Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol, 2003. 162(5): p. 833-42.
111. Leung, V.Y., et al., SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 2011. 7(11): p. e1002356.
112. Yamashita, S., et al., Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res, 2009. 315(13): p. 2231-40.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98102-
dc.description.abstract關節軟骨因缺乏血管與神經供應,且細胞密度低,一旦受損後自我修復能力有限,臨床上至今仍缺乏具潛力的非侵入性再生療法。低強度脈衝超音波(Low-Intensity Pulsed Ultrasound, LIPUS)作為一種安全且可穿透組織的物理刺激,近年廣泛應用於促進組織修復與再生。有研究指出,人體多種組織具備壓電特性,而軟骨因富含膠原蛋白,亦被視為具有生物壓電潛力的組織之一。本研究以超音波作用於生物壓電材料而誘發的壓電效應為切入點,探討其調控細胞行為與促進軟骨修復的潛力。
為了更精確模擬LIPUS作用於軟骨組織的微環境,首先於體外建立以具壓電性的石英片作為細胞培養基材之刺激模型,評估超音波介導的壓電刺激對初代軟骨細胞之影響。結果顯示,使用LIPUS刺激軟骨細胞4天後,相較於種植在普通玻璃片的組別(純LIPUS組),種植在石英片上的軟骨細胞,其SOX9和Collagen II 的表現有更顯著的上升。顯示LIPUS與壓電效應之複合刺激,有更能促進細胞表行穩定與基質合成能力之可能性。
其次進行動物實驗,進一步於小鼠全層膝軟骨缺損模型中評估LIPUS治療成效。其治療參數設定為頻率1 MHz、600 mVpp、占空比5%、聲強度(ISATA)為61.4mW/cm2,每次刺激5分鐘,每週三次(週一、三、五),並於第2、4與6週進行組織取樣與分析。透過組織修復半定量評分與免疫螢光染色評估修復情形與關鍵蛋白表現,並進一步將軟骨劃分為損傷周圍區域(Peri-lesional region)與整體區域(Entire region)進行空間層級分析,以確認LIPUS對損傷的治療效果。
結果顯示,第4週LIPUS治療組的修復評分顯著高於對照組,且在損傷周圍區域SOX9與Aggrecan表現比例顯著提升,Collagen II亦呈回升趨勢;整體區域呈相似表現。至第6週,LIPUS治療組於損傷周圍區域觀察到Collagen X表現下降,顯示病理性肥大分化受到抑制,整體組織修復品質獲得改善。
綜合細胞與動物實驗結果,本研究顯示超音波介導的壓電效應能優化超音波調節軟骨細胞的能力,促進軟骨細胞SOX9與基質蛋白的表現,並有效抑制病理性肥大變化。區域間的表現差異進一步突顯LIPUS對損傷區域修復潛力,為未來非侵入性軟骨再生療法之發展提供潛在機轉與應用依據。然而,壓電效應所涉之細胞內分子傳遞機制(Cell Signaling Pathway)仍有待後續研究進一步釐清。
zh_TW
dc.description.abstractArticular cartilage has limited self-repair capacity due to its lack of vasculature and innervation, as well as its low cell density. Clinically, there is still a lack of promising non-invasive regenerative therapies. Low-Intensity Pulsed Ultrasound (LIPUS), a safe and tissue-penetrating physical stimulus, has been widely applied in recent years to promote tissue repair and regeneration. Studies have shown that various human tissues possess piezoelectric properties. Cartilage, rich in collagen, is also considered a biologically piezoelectric tissue. This study explores the potential of LIPUS-induced piezoelectric effects to modulate cell behavior and enhance cartilage repair.
To better simulate the microenvironment of LIPUS acting on cartilage, an in vitro stimulation model was first established using a piezoelectric quartz substrate for cell culture. The effects of ultrasound-mediated piezoelectric stimulation on primary chondrocytes were evaluated. After 4 consecutive days of stimulation, the expression levels of SOX9 and Collagen II were significantly increased, showing a clear difference compared to the group treated with LIPUS alone. This suggests that piezoelectric effects may enhance the ability of LIPUS to promote chondrocyte phenotype stability and extracellular matrix (ECM) synthesis.
Subsequently, the therapeutic effects of LIPUS were evaluated in a full-thickness cartilage defect model in the mouse knee joint. The treatment was applied at an intensity of 61.4 mW/cm² for 5 minutes per session, three times per week. Tissue samples were collected at weeks 2, 4, and 6 for histological and molecular analyses. Cartilage repair was assessed using semi-quantitative scoring and immunofluorescence staining for key markers. Spatial analysis was further performed by dividing cartilage into the peri-lesional region and the entire region to confirm the localized effect of LIPUS.
The results showed that by week 4, the LIPUS-treated group exhibited significantly higher repair scores compared to the control group. SOX9 and Aggrecan expression levels were significantly elevated in the peri-lesional region, with Collagen II also showing an increasing trend. Similar patterns were observed in the entire region. By week 6, a reduction in Collagen X expression was observed in the peri-lesional region of the LIPUS group, suggesting suppression of pathological hypertrophic differentiation and improved overall tissue repair quality.
In summary, results from both in vitro and in vivo experiments demonstrate that ultrasound-mediated piezoelectric stimulation may regulate chondrocyte behavior, promoting phenotype stability and ECM synthesis while effectively suppressing pathological hypertrophy. The regional differences in expression further highlight the potential of LIPUS to enhance cartilage repair at the injury site, providing mechanistic insight and application potential for future non-invasive cartilage regeneration therapies. However, the exact cellular signaling pathways involved in the piezoelectric effects remain to be elucidated in future studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-25T16:05:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-25T16:05:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定 I
致謝 II
摘要 III
ABSTRACT V
目次 VII
圖次 XI
表次 XV
第一章 緒論 1
1.1臨床背景: 關節軟骨損傷 1
1.2關節軟骨組織、功能 3
1.3軟骨細胞 5
1.4軟骨細胞內蛋白分子 7
1.4.1 SOX9 7
1.4.2第二型膠原蛋白(Collagen II) 8
1.4.3 聚集蛋白聚糖 (Aggrecan) 10
1.4.4 X 型膠原蛋白(Collagen X) 12
1.5超音波介紹 13
1.5.1 超音波 13
1.5.2 超音波參數簡介 13
1.5.3 低強度超音波於軟骨修復的應用潛力 16
1.6壓電效應介紹 17
1.7研究目的 19
第二章 材料與方法 21
2.1研究方法介紹 21
2.2小鼠初代軟骨細胞的取得與培養 22
2.3 2D單層培養環境測試實驗 23
2.3.1實驗方法 23
2.3.2生物檢測法-西方墨點法 24
2.3.3分析方法 29
2.4超音波介導壓電刺激對軟骨細胞外基質之影響 31
2.4.1實驗設計 31
2.4.2石英片與軟骨組織壓電係數(d33)測量 33
2.4.3壓電材料於超音波刺激下之壓電特性評估 34
2.4.4細胞刺激裝置與架設介紹 35
2.4.4.3水桶超音波刺激系統 36
2.4.4.4 細胞刺激裝置架設 36
2.4.5刺激裝置特性驗證 37
2.4.6生物檢測方法-西方墨點法 41
2.4.7分析方法 41
2.5小鼠膝軟骨損傷治療實驗 41
2.5.1實驗設計 41
2.5.2 小鼠膝軟骨損傷模型建立 43
2.5.3動物刺激裝置與架設介紹 44
2.5.3.1訊號產生器 44
2.5.3.2功率放大器 44
2.5.3.3 Olympus超音波刺激探頭 44
2.5.4刺激裝置驗證 45
2.5.4生物檢測方法 48
2.6統計檢定分析 57
第三章 實驗結果 58
3.1前導實驗 58
3.1.1石英片與軟骨組織壓電係數(d33)測量 58
3.1.2壓電材料於超音波刺激下之壓電特性評估 58
3.2 2D單層培養環境測試實驗結果 59
3.3超音波介導的壓電刺激對軟骨細胞影響 60
3.3.1 SOX9蛋白表現 61
3.3.2 細胞外基質蛋白表現(Collagen II 與 Aggrecan) 61
3.4小鼠膝軟骨損傷模型再現性實驗結果 62
3.5小鼠膝軟骨損傷治療實驗 63
3.5.1 治療2週結果 63
3.5.2 治療4週結果 70
3.5.3 治療6周結果 78
第四章 討論 86
4.1超音波介導的壓電刺激軟骨細胞實驗討論 86
4.2小鼠膝軟骨損傷治療實驗討論 88
4.2.1小鼠膝軟骨損傷模型建立 88
4.2.2小鼠膝軟骨損傷治療 88
第五章 結論 92
第六章 未來展望 94
第七章 參考文獻 96
-
dc.language.isozh_TW-
dc.subject低強度脈衝超音波、壓電效應、軟骨修復、SOX9、細胞外基質(ECM)、Collagen Xzh_TW
dc.subjectCartilage repairen
dc.subjectLow-Intensity Pulsed Ultrasound (LIPUS)en
dc.subjectCollagen Xen
dc.subjectExtracellular matrix (ECM)en
dc.subjectSOX9en
dc.subjectPiezoelectric effecten
dc.title超音波介導的壓電刺激對軟骨細胞外基質及軟骨組織修復之影響zh_TW
dc.titleThe Effects of Ultrasound-Mediated Piezoelectric Stimulation on Cartilage Extracellular Matrix and Tissue Repairen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張至宏;周民元;趙本秀zh_TW
dc.contributor.oralexamcommitteeChih-Hung Chang;Min-Yuan Chou;Pen-Hsiu Chaoen
dc.subject.keyword低強度脈衝超音波、壓電效應、軟骨修復、SOX9、細胞外基質(ECM)、Collagen X,zh_TW
dc.subject.keywordLow-Intensity Pulsed Ultrasound (LIPUS), Piezoelectric effect, Cartilage repair, SOX9, Extracellular matrix (ECM), Collagen X,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202501688-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2025-07-26-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved