Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98100Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 薛文証 | zh_TW |
| dc.contributor.advisor | Wen-Jeng Hsueh | en |
| dc.contributor.author | 林配德 | zh_TW |
| dc.contributor.author | Pei-Te Lin | en |
| dc.date.accessioned | 2025-07-25T16:04:36Z | - |
| dc.date.available | 2025-07-26 | - |
| dc.date.copyright | 2025-07-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-21 | - |
| dc.identifier.citation | [1] A.T. Sose, S.Y. Joshi, L.K. Kunche, F. Wang, S.A. Deshmukh, A review of recent advances and applications of machine learning in tribology, Phys Chem Chem Phys, 25, 4408-4443 (2023).
[2] P. Visconti, G. Rausa, C. Del-Valle-Soto, R. Velázquez, D. Cafagna, R. De Fazio, Machine learning and IoT-based solutions in industrial applications for Smart Manufacturing: a critical review, Future Internet, 16, 394 (2024). [3] H. El-Sofany, S.A. El-Seoud, O.H. Karam, B. Bouallegue, Using machine learning algorithms to enhance IoT system security, Sci. Rep., 14, 12077 (2024). [4] J. Xu, Z. Zhang, W. Zhang, Z. Chen, Recent progress of self-powered optoelectronic devices based on 2D materials, Processes, 12, 1728 (2024). [5] R. Cao, S. Fan, P. Yin, C. Ma, Y. Zeng, H. Wang, et al., Mid-infrared optoelectronic devices based on two-dimensional materials beyond graphene: status and trends, Nanomaterials, 12, 2260 (2022). [6] W. Li, Z. Song, H. Kong, M. Chen, S. Liu, Y. Bao, et al., An integrated wearable self-powered platform for real-time and continuous temperature monitoring, Nano energy, 104, 107935 (2022). [7] H.R. Madvar, Z. Kordrostami, A. Mirzaei, Sensitivity enhancement of resistive ethanol gas sensor by optimized sputtered-assisted CuO decoration of ZnO nanorods, Sensors, 23, 365 (2022). [8] J. Park, J. Lee, M.S. Choi, J. S. Huh, Formaldehyde gas sensing characteristics of ZnO-TiO2 gas sensors, Chemosensors, 11, 140 (2023). [9] C. Y. Huang, X. R. He, C. T. Huang, Realization of a self-powered InGaZnO MSM ozone sensor via a surface state modulated photovoltaic effect, ACS Appl. Electron. Mater., 4, 5437-5445 (2022). [10] B. Mondal, P. K. Gogoi, Nanoscale heterostructured materials based on metal oxides for a chemiresistive gas sensor, ACS Appl. Electron. Mater., 4, 59-86 (2022). [11] Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie, P. Xu, et al., Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens, J. Am. Chem. Soc., 139, 10365-10373 (2017). [12] J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu, Y. Deng, et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature, Adv. Mater., 34, 2104958 (2022). [13] O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song, W. Song, et al., Inkjet‐Printed rGO/binary Metal oxide sensor for predictive gas sensing in a mixed environment, Adv. Funct., 32, (2022). [14] M. Tonezzer, D. T. T. Le, S. Iannotta, N. Van Hieu, Selective discrimination of hazardous gases using one single metal oxide resistive sensor, Sens. Actuators B: Chem., 277, 121-128 (2018). [15] R. Jaisutti, J. Kim, S.K. Park, Y. H. Kim, Low-temperature photochemically activated amorphous indium-gallium-zinc oxide for highly stable room-temperature gas sensors, ACS Appl. Mater. Interfaces., 8, 20192-20199 (2016). [16] X. Chen, J. Hu, P. Chen, M. Yin, F. Meng, Y. Zhang, UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability, Sens. Actuators B: Chem., 339, 129902 (2021). [17] Y. H. Chuai, D. C. Su, D. Yue, Y. Bai, Highly sensitive sensor for noxious gases using transparent conductive CuAlO2 thin film via molecular beam epitaxy, Sens. Actuators A: Phys., 347, 113895 (2022). [18] X. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C. Xu, Room temperature sensing of ozone by transparent p-type semiconductor CuAlO2, Appl Phys Lett, 85, 1728-1729 (2004). [19] H. Wang, L. Li, J. Ma, J. Li, D. Li, 2D perovskite narrowband photodetector arrays, J. Mater. Chem. C., 9, 11085-11090 (2021). [20] Y. Qin, L.H. Li, Z. Yu, F. Wu, D. Dong, W. Guo, et al., Ultra-high performance amorphous Ga2O3 photodetector arrays for solar‐blind imaging, Adv Sci, 8, 2101106 (2021). [21] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J. L. Sun, Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array, ACS Appl. Mater. Interfaces., 6, 20887-20894 (2014). [22] J. Xu, Y. Cao, J. Wei, J. L. Sun, J. Xu, J. He, Solution synthesis of Cu2O/Si radial nanowire array heterojunctions for broadband photodetectors, Mater. Res. Express, 1, 015002 (2013). [23] C. Y. Huang, X.-R. He, Easily processable Cu2O/Si self-powered photodetector array for image sensing applications, ACS Appl. Electron. Mater., 4, 1335-1342 (2022). [24] V.V. Krivetskiy, M.D. Andreev, A.O. Efitorov, A.M. Gaskov, Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions, Sens. Actuators B: Chem., 329, 129187 (2021). [25] G. Bae, M. Kim, W. Song, S. Myung, S.S. Lee, K. S. An, Impact of a diverse combination of metal oxide gas sensors on machine learning-based gas recognition in mixed gases, ACS omega, 6, 23155-23162 (2021). [26] T. C. Wu, J. Dai, G. Hu, W. B. Yu, O. Ogbeide, A. De Luca, et al., Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity, Sens. Actuators B: Chem., 321, 128446 (2020). [27] S. Deng, H. Guo, J. Yan, D. Zhu, J. Li, M. Qiao, et al., NIR-UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing, Chem. Eng. J. , 472, 144908 (2023). [28] K. Baek, S. Shin, H. So, Decoupling thermal effects in GaN photodetectors for accurate measurement of ultraviolet intensity using deep neural network, Eng. Appl. Artif. Intell., 123, 106309 (2023). [29] S. Thirumalairajan, V. R. Mastelaro, C. A. Escanhoela Jr, In-depth understanding of the relation between CuAlO2 particle size and morphology for ozone gas sensor detection at a nanoscale level, ACS Appl. Mater. Interfaces., 6, 21739-21749 (2014). [30] A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B, 229, 206-217 (2018). [31] C. H. Wu, K. W. Chang, Y. N. Li, Z. Y. Deng, K. L. Chen, C. C. Jeng, et al., Improving the sensitive and selective of trace amount ozone sensor on Indium-Gallium-Zinc Oxide thin film by ultraviolet illumination, Sens. Actuators B: Chem., 273, 1713-1718 (2018). [32] W. Tian, Y. Wang, L. Chen, L. Li, Self-powered nanoscale photodetectors, Small, 13, 1701848 (2017). [33] C. Y. Huang, C. C. Kang, Y. C. Ma, Y. C. Chou, J. H. Ye, R. T. Huang, et al., p-GaN/n-ZnO nanorods: the use of graphene nanosheets composites to increase charge separation in self-powered visible-blind UV photodetectors, Nat. Nanotechnol., 29, 445201 (2018). [34] Y. Zhu, K. Liu, Q. Ai, Q. Hou, X. Chen, Z. Zhang, et al., A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction, J. Mater. Chem. C., 8, 2719-2724 (2020). [35] J. J. Lee, D. H. Shin, D. H. Jung, S. D. Oh, H. Lee, A high-performance broadband self-powered photodetector employing an MoS2/LaVO3 heterojunction structure, J. Alloys Compd., 937, 168404 (2023). [36] A. Chauhan, P. Chauhan, Powder XRD technique and its applications in science and technology, J Anal Bioanal Tech, 5, 1-5 (2014). [37] A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, Proceedings of the 2018 international conference on hydraulics and pneumatics—HERVEX, Băile Govora, Romania, (2018) 7-9. [38] V. D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), J Nanopart Res, 397-417 (2020). [39] S. Liu, Y. Wang, Application of AFM in microbiology: a review, Scanning, 32, 61-73(2010). [40] M. Seah, The quantitative analysis of surfaces by XPS: A review, Surf Interface Anal, 2, 222-239 (1980). [41] C. Y. Huang, X. R. He, J. J. Jhang, J. H. Wu, T. H. Wu, T. Y. Lin, A self-powered dual-functional hybrid Cu2O/SiNWs heterojunction with applications in broadband photodetectors and ozone gas sensors, Sens. Actuators A: Phys., 347, (2022). [42] C. Y. Huang, S. H. Yuan, T. C. Li, W. C. Tu, High-performance solution-processed flexible Cu2O photodetector via UV-illumination, Optik, 247, (2021). [43] H. Nazemi, A. Joseph, J. Park, A. Emadi, Advanced micro-and nano-gas sensor technology: A review, Sensors, 19, 1285 (2019). [44] C. Y. Huang, C. Y. Yan, Y. Q. Lou, Dual-functional hybrid ZnSnO/Graphene nanocomposites with applications in high-performance UV photodetectors and ozone gas sensors,Ceram. Int., 48, 3527-3535 (2022). [45] A. Mammone, M. Turchi, N. Cristianini, Support vector machines, Wiley Interdiscip. Rev. Comput., 1, 283-289 (2009). [46] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, A. Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing, 408, 189-215(2020). [47] C. Gold, P. Sollich, Model selection for support vector machine classification, Neurocomputing, 55, 221-249 (2003). [48] S.J. Rigatti, Random forest, J. Insur. Med., 47, 31-9 (2017). [49] M. Belgiu, L. Drăguţ, Random forest in Remote Sensing: A review of applications and future directions, Isprs J Photogramm, 114, 24-31 (2016). [50] G. I. Webb, E. Keogh, R. Miikkulainen, Naïve Bayes, Encyclopedia of machine learning, 15, 713-714(2010). [51] K. M. Leung, Naive bayesian classifier, Polytechnic University Department of Computer Science/Finance and Risk Engineering, (2007) 123-156. [52] O. Kramer, O. Kramer, K-nearest neighbors, Dimensionality reduction with unsupervised nearest neighbors, 13-23 (2013). [53] Z. Zhang, Introduction to machine learning: k-nearest neighbors, Ann Transl Med, 4, 218 (2016). [54] B. Yegnanarayana, Artificial neural networks: PHI Learning Pvt. Ltd, (2009). [55] H. Taud, J. F. Mas, Multilayer perceptron (MLP), Geomatic approaches for modeling land change scenarios, Springer, 451-455 (2017). [56] Y. X. Yuan, A modified BFGS algorithm for unconstrained optimization, IMA J Numer Anal, 11, 325-332 (1991). [57] A. Maćkiewicz, W. Ratajczak, Principal components analysis (PCA), Comput. Geosci., 19, 303-342(1993). [58] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat Comput, 14, 199-222 (2004). [59] Y. Qin, C. Li, X. Shi, W. Wang, MLP-based regression prediction model for compound bioactivity, Front. Bioeng. Biotechnol., 10, 946329 (2022). [60] X. Luo, Z. Lou, L. Wang, X. Zheng, T. Zhang, Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors, New J. Chem., 38, 84-89 (2014). [61] F. Meng, N. Hou, Z. Jin, B. Sun, W. Li, X. Xiao, et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures, Sens. Actuators B: Chem., 219, 209-217 (2015). [62] C. Feng, F. Wen, Z. Ying, L. Li, X. Zheng, P. Zheng, et al., Polypeptide-assisted hydrothermal synthesis of ZnO for room temperature NO2 gas sensor under UV illumination, Chem. Phys. Lett., 754, 137745 (2020). [63] D. Zhang, S. Yu, X. Wang, J. Huang, W. Pan, J. Zhang, et al., UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection, J. Hazard. Mater., 423, 127160 (2022). [64] C. Baratto, R. Kumar, G. Faglia, K. Vojisavljević, B. Malič, p-Type copper aluminum oxide thin films for gas-sensing applications, Sens. Actuators B: Chem., 209, 287-296 (2015). [65] J. Ahmed, Y. Mao, Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2, J. Solid State Chem., 242, 77-85 (2016). [66] R. S. Yu, Y. C. Lee, Effects of annealing on the optical and electrical properties of sputter-deposited CuGaO2 thin films, Thin Solid Films, 646, 143-149 (2018). [67] A. Alias, M. Sakamoto, T. Kimura, K. Uesugi, Temperature dependence of CuGaO2 films fabricated by sol-gel method, Japanese J. Appl. Phys., 51, 035503 (2012). [68] Y. Cheng, J. Ye, L. Lai, S. Fang, D. Guo, Ambipolarity regulation of deep‐UV photocurrent by controlling crystalline phases in Ga2O3 nanostructure for switchable logic applications, Adv. Electron. Mater., 9, 2201216 (2023). [69] L. Deng, H. Hu, Y. Wang, C. Wu, H. He, J. Li, et al., Surface plasma treatment reduces oxygen vacancies defects states to control photogenerated carriers transportation for enhanced self-powered deep UV photoelectric characteristics, Appl Surf Sci., 604, 154459 (2022). [70] M. Han, T. Huang, J. Zhang, Y. Li, Z. Hu, Structural, optical and electrical properties of delafossite CuGaO2 films grown by sol-gel method, Eighth International Conference on Thin Film Physics and Applications, 39-43 (2013). [71] W. Yu, W. Li, J. Wu, J. Sun, Z. Hu, J. Chu, Diversity of electronic transitions and photoluminescence properties in nanocrystalline Mn/Fe-doped tin dioxide semiconductor films: An effect from oxygen pressure, J. Appl. Phys., 110,(2011). [72] Z. Li, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, et al., Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method, ACS Appl. Mater. Interfaces., 8, 20962-20968 (2016). [73] S. Zhou, M. Chen, Q. Lu, J. Hu, H. Wang, K. Li, et al., Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing, Mater. Lett., 247, 15-18 (2019). [74] Y. Sui, Y. Zeng, W. Zheng, B. Liu, B. Zou, H. Yang, Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties, Sens. Actuators B: Chem., 171, 135-140 (2012). [75] S. B. Nacer, A. Labidi, S. Touihri, K. Aguir, Thickness effect on sensing properties of pure Cu2O thin films under sub-ppm O3 levels, Mater. Res. Express, 7, 016406 (2019). [76] S. Thirumalairajan, V. R. Mastelaro, A novel organic pollutants gas sensing material p-type CuAlO2 microsphere constituted of nanoparticles for environmental remediation, Sens. Actuators B: Chem., 223, 138-148 (2016). [77] B. Tong, Z. Deng, G. Meng, J. Chang, Y. Lu, L. Qi, et al., Ultrasensitive and selective CuAlO2 sensor toward H2S based on surface sulfuration-desulfuration reaction, Sens. Actuators B: Chem., 313, 128027 (2020). [78] K.G. Krishna, G. Umadevi, S. Parne, N. Pothukanuri, Zinc oxide based gas sensors and their derivatives: a critical review, J. Mater. Chem. C., 11, 3906-3925 (2023). [79] S. H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.P. Lv, X. Hong, V. Virtanen, et al., Highly Selective H2S Gas Sensor Based on Ti3C2Tx MXene-Organic Composites, Acs Appl Mater Inter., 15, 7063-7073 (2023). [80] U. Yaqoob, M.I. Younis, Chemical Gas Sensors: Recent developments, challenges, and the potential of machine learning-A Review, Sensors (Basel), 21(2021). [81] H. He, H. Huang, C. Peng, G. Liu, J. Liu, S. Duan, et al., High-performance sol-gel processed a-IGZO TFTs with low-melting point metal electrodes, J. Mater. Chem. C., 12, 607-613 (2024). [82] W. C. Huang, Z. C. Tseng, W. J. Hsueh, S. Y. Liao, C. Y. Huang, X-Ray detectors based on amorphous InGaZnO thin films, IEEE Trans. Ind. Electron., 70, 3690-3694 (2023). [83] B. He, G. He, L. Zhu, J. Cui, E. Fortunato, R. Martins, Electrospun highly aligned IGZO nanofiber arrays with low-thermal-budget for challenging transistor and integrated electronics, Adv. Funct., 34, 2310264 (2023). [84] J. H. Ma, J. H. Jeong, S. J. Kang, M. H. Park, H. J. Ha, E. Kim, et al., High Rejection‐Ratio IGZO Ultraviolet phototransistor via additional solution processed ZnO absorption layer, Adv. Opt. Mater., 12, 2400166 (2024). [85] P. L. Chen, I. P. Liu, W. C. Chen, J. S. Niu, W. C. Liu, Study of a platinum nanoparticle (Pt NP)/amorphous In-Ga-Zn-O (a-IGZO) thin-film-based ammonia gas sensor, Sens. Actuators B: Chem., 322, 128592 (2020). [86] C. Y. Huang, T. Y. Peng, W. T. Hsieh, Realization of a self-powered InGaZnO MSM UV photodetector using localized surface fluorine plasma treatment, ACS Appl. Electron. Mater., 2, 2976-2983(2020). [87] M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A Review, Sens. Actuators B: Chem., 301, 126845 (2019). [88] J. H. Kim, E. K. Park, M. S. Kim, H. J. Cho, D. H. Lee, J. H. Kim, et al., Bias and illumination instability analysis of solution-processed a-InGaZnO thin-film transistors with different component ratios, Thin Solid Films, 645, 154-159 (2018). [89] W. C. Huang, C. I. Chou, C. J. Yang, Y. M. Chen, W. J. Hsueh, S. Y. Liao, et al., Effect of ultraviolet light on Mn3O4 thin films that are grown using SILAR for room-temperature ozone gas sensors, J Electrochem Soc., 170, 087516 (2023). [90] K. L. Chen, G. J. Jiang, K. W. Chang, J. H. Chen, C. H. Wu, Gas sensing properties of indium-gallium-zinc-oxide gas sensors in different light intensity, Anal. Chem., 4, 8-12 (2015). [91] M. Ivanovskaya, A. Gurlo, P. Bogdanov, Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors, Sens. Actuators A: Phys., 77, 264-267 (2001). [92] P. Pancholi, A. Kumar, D.S. Bikundia, S. Chourasiya, An observation of seasonal and diurnal behavior of O3-NOx relationships and local/regional oxidant (OX = O3 + NO2 ) levels at a semi-arid urban site of western India, Sustain. Environ. Res., 28, 79-89 (2018). [93] P. G. Su, M. C. Li, Recognition of binary mixture of NO2 and NO gases using a chemiresistive sensors array combined with principal component analysis, Sens. Actuators A: Phys., 331, 112980 (2021). [94] S. Mitra, A. Aravindh, G. Das, Y. Pak, I. Ajia, K. Loganathan, et al., High-performance solar-blind flexible deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation, Nano energy, 48, 551-559 (2018). [95] S. Mitra, Y. Pak, N. Alaal, M. N. Hedhili, D. R. Almalawi, N. Alwadai, et al., Novel P-type wide bandgap manganese oxide quantum dots operating at deep UV range for optoelectronic devices, Adv. Opt. Mater., 7, 1900801 (2019). [96] D. Beery, T.W. Schmidt, K. Hanson, Harnessing sunlight via molecular photon upconversion, ACS Appl. Mater. Interfaces., 13, 32601-32605 (2021). [97] D. Wang, X. Liu, Y. Kang, X. Wang, Y. Wu, S. Fang, et al., Bidirectional photocurrent in p–n heterojunction nanowires, Nat. Electron., 4, 645-652 (2021). [98] Z. Xu, X. Yuan, T. Zhou, L. Fang, A multichannel optical computing architecture for advanced machine vision, Light: sci. appl., 11, 255 (2022). [99] F. Ma, M. Yuan, I. Kozak, Multispectral imaging: Review of current applications, Surv. Ophthalmol., 68, 889-904 (2023). [100] Q. Wan, A. Zhang, W. Cao, Y. Bai, B. Wang, H. Cheng, et al., Highly sensitive Ga2O3 MSM solar-blind UV photodetector with impact ionization gain, Opt Express, 32, 32322-32335 (2024). [101] T. Xu, X. Fan, G. Zhu, F. Qin, P. Wan, K. Tang, et al., Integrated GaN prism array self-powered photodetector on Si for ultraviolet imaging and communication, Adv. Opt. Mater., 12, 2400237 (2024). [102] T. Yan, Z. Li, F. Cao, J. Chen, L. Wu, X. Fang, An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection, Adv. Mater., 34, 2201303 (2022). [103] J. Chen, W. Ouyang, W. Yang, J. H. He, X. Fang, Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications, Adv. Funct., 30, 1909909 (2020). [104] L. Pan, L. Dai, O.J. Burton, L. Chen, V. Andrei, Y. Zhang, et al., High carrier mobility along the [111] orientation in Cu2O photoelectrodes, Nature, 628, 765-70 (2024). [105] Y. Liu, J. Zhu, L. Cai, Z. Yao, C. Duan, Z. Zhao, et al., Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells, Solar RRL, 4, 1900339 (2020). [106] H. Son, P. Uthirakumar, J. H. Park, J. H. Park, S. Woo, C. Y. Kim, Investigation of non-stoichiometric delafossite photoelectrodes composed of cuprous oxide and iron oxide for enhanced water-splitting, J. Alloys Compd., 948, 169781 (2023). [107] J. C. Kao, J. P. Chou, P. J. Chen, Y. C. Lo, Using adatoms to tune the band structures of Cu2O surfaces for photocatalytic applications, Mater. Today Phys., 38, 101218 (2023). [108] C. Y. Huang, K. Y. Juan, P. H. Guo, Y. R. Wu, S. F. Kao, S. Y. Liao, Self-powered InGaZnO ozone gas sensors based on a metal-semiconductor-metal structure with asymmetric interdigitated electrodes, ACS Appl. Electron. Mater., 6, 2075-2083 (2024). [109] S. Rai, Shreya, P. Phogat, R. Jha, S. Singh, Wide absorption spectrum and rapid response time of PEC photodetectors based on MoS2-Se nanocomposites, Chem. eng. commun., 211, 1556-1571 (2024). [110] W. Xu, Y. Gao, K. Qian, B. Wang, R. Xu, M. He, et al., A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse, J. Mater. Chem. C., 10, 9391-9400 (2022). [111] C. Labanti, J. Wu, J. Shin, S. Limbu, S. Yun, F. Fang, et al., Light-intensity-dependent photoresponse time of organic photodetectors and its molecular origin, Nat. Commun., 13, 3745 (2022). [112] E. Aslan, D. Kaya, K. Karadağ, U. Harmancı, F. Aslan, Enhancing performance of SnS2 based self-powered photodetector and photocatalyst by Na incorporation,Ceram. Int., 50, 27626-27634 (2024). [113] B. Raheli, M.T. Aalami, A. El-Shafie, M.A. Ghorbani, R.C. Deo, Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River, Environ. Earth Sci., 76, 1-16 (2017). [114] J. Wainer, P. Fonseca, How to tune the RBF SVM hyperparameters An empirical evaluation of 18 search algorithms, Artif. Intell. Rev., 54, 4771-4797 (2021). [115] G. Mallinis, I. Chrysafis, G. Korakis, E. Pana, A. P. Kyriazopoulos, A random forest modelling procedure for a multi-sensor assessment of tree species diversity, Remote Sens. Environ., 12, 1210 (2020). [116] A. Kuri-Morales, Closed determination of the number of neurons in the hidden layer of a multi-layered perceptron network, Soft Comput., 21, 597-609 (2017). [117] A. F. Sheta, S. E. M. Ahmed, H. Faris, A comparison between regression artificial neural networks and support vector machines for predicting stock market index, Soft Comput., 4, 040710 (2015). [118] N. Najwa Mohd Rizal, G. Hayder, M. Mnzool, B. M. E. Elnaim, A. O. Y. Mohammed, M. M. Khayyat, Comparison between regression models, support vector machine (SVM), and artificial neural network (ANN) in river water quality prediction, Processes, 10, 1652 (2022). [119] A. Makynen, T. Rahkonen, J. Kostamovaara, A binary photodetector array for position sensing, Appl Phys Lett, 110, 153505 (1998). [120] S. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, W. J. Choi, Fabrication of high-quality GaAs-based photodetector arrays on Si, Appl Phys Lett, 110, 153505 (2017). [121] A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, Physica D, 404, 132306 (2020). [122] D. D. Oliveira, M. Rampinelli, G.Z. Tozatto, R.V. Andreão, S.M.T. Müller, Forecasting vehicular traffic flow using MLP and LSTM, Neural Comput Appl, 33, 17245-17256 (2021). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98100 | - |
| dc.description.abstract | 機器學習技術與光電元件的結合已成為提升現代感測平台功能性、智慧性和適用性的變革性方法。受低功耗、高選擇性和即時感測需求的驅動,本論文對機器學習在室溫條件下運行的光電感測器中的應用進行了全面的研究。
探討了三種相互關聯的感測策略。首先開發了一種光化學激活氣體感測平台,利用紫外線激發實現穩定、高效的氣體檢測,而無需加熱。其次,提出了一種光學調製氣體識別系統,其中透過改變照明強度產生的不同光學指紋透過機器學習模型進行分析,包括支援向量機、樸素貝葉斯、隨機森林和 K 近鄰演算法,以實現準確的多氣體分類和濃度預測。第三,製造了基於自供電異質接面結構的寬頻光電探測器陣列,展示了使用機器學習輔助波長識別對紫外線、可見光和近紅外線區域的多光譜光訊號進行分類和重建的能力。 透過將材料創新與機器學習驅動的數據處理相結合,這項工作建立了智慧氣體感測和光學檢測的統一框架,促進了可擴展、節能和高度適應的下一代感測技術。研究結果強調了機器學習在提高光電設備性能和多功能性方面的關鍵作用,為未來的智慧感測應用奠定了基礎。 | zh_TW |
| dc.description.abstract | The integration of machine learning (ML) techniques with optoelectronic devices is emerging as a transformative approach to advancing the functionality, intelligence, and applicability of modern sensing platforms. Motivated by the demand for low-power, high-selectivity, and real-time sensing, this dissertation presents a comprehensive study on the application of ML in optoelectronic sensors operating under room temperature (RT) conditions.
Three interrelated sensing strategies are explored. First, a photochemically activated gas sensing platform is developed, utilizing ultraviolet (UV) excitation to enable stable and efficient gas detection without the need for thermal heating. Second, an optically modulated gas identification system is proposed, in which distinct optical fingerprints generated through varying illumination intensities are analyzed by ML including Support Vector Machines (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) to achieve accurate multi-gas classification and concentration prediction. Third, a broadband photodetector array (PDA) based on a self-powered heterojunction structure is fabricated, demonstrating the ability to classify and reconstruct multispectral light signals across UV, visible (Vis), and near-infrared (NIR) regions using ML-assisted wavelength recognition. By integrating material innovation with ML-driven data processing, this work establishes a unified framework for intelligent gas sensing and optical detection, promoting scalable, energy-efficient, and highly adaptive next-generation sensing technologies. The results underline the critical role of ML in enhancing the performance and versatility of optoelectronic devices, laying a foundation for future smart sensing applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-25T16:04:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-25T16:04:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv Contents vi List of Figures x List of Tables xviii List of Symbols xix List of Abbreviations xx Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 3 1.2.1 Light-activated gas sensing 3 1.2.2 PDAs and multi-wavelength recognition development 7 1.2.3 Machine learning for gas sensors and photodetectors 9 1.3 Research objectives 12 Chapter 2 Theoretical Background and Methodology 14 2.1 Sensing mechanisms of the devices 14 2.1.1 Photoactivated gas sensing mechanism of metal oxide semiconductors 14 2.1.2 Photodetection mechanism of self-powered heterojunction device 21 2.2 Measurement systems and experimental setup 23 2.2.1 X-ray Diffraction (XRD) 23 2.2.2 Scanning Electron Microscopy (SEM) 24 2.2.3 Energy Dispersive Spectroscopy (EDS) 25 2.2.4 Atomic Force Microscopy (AFM) 26 2.2.5 X-ray Photoelectron Spectroscopy (XPS) 27 2.2.6 UV-Visible Spectroscopy (UV-vis) 28 2.2.7 Measurement system for gas sensing 29 2.2.8 Measurement System for PDA-based optical imaging 31 2.3 Definition of sensing parameters 32 2.3.1 Definition of gas sensing performance parameters 32 2.3.2 Definition of Photodetector performance parameters 33 2.4 Machine learning algorithms for classification 34 2.4.1 Support Vector Machines (SVM) 34 2.4.2 Random Forest (RF) 36 2.4.3 Naïve Bayes (NB) 39 2.4.4 K-Nearest Neighbors (KNN) 40 2.5 Overview of neural networks 43 2.5.1 Artificial Neural Networks (ANN) 43 2.5.2 Multilayer Perceptron (MLP) 44 2.5.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm 46 2.6 Feature extraction and Principal Component Analysis (PCA) 46 2.7 Regression models for prediction 48 Chapter 3 Photochemically-Activated p-Type CuGaO2 Thin Films for Highly-Stable Room-Temperature Gas Sensors 51 3.1 Introduction 51 3.2 Materials and methods 52 3.2.1 Fabrication of CuGaO2 gas sensor 52 3.2.2 Materials analysis & device characterization 52 3.3 Results and discussion 53 3.3.1 Material analysis 53 3.3.2 Gas sensing characteristics 58 3.3.3 Long-term stability and humidity influence evaluation 66 3.4 Conclusions 68 Chapter 4 Optical Fingerprint for Gas Identification at Room Temperature using Light-Activated a-IGZO Thin Films and Machine Learning 69 4.1 Introduction 69 4.2 Materials and methods 70 4.2.1 Fabrication of a-IGZO gas sensor 70 4.2.2 Materials analysis & device characterization 71 4.2.3 Machine learning-based data processing 72 4.3 Results and discussion 73 4.3.1 Material Characterization 73 4.3.2 Gas sensing performance 78 4.3.3 Optical fingerprints and PCA analysis 82 4.3.4 Machine learning-based gas identification 88 4.3.5 Machine learning-based prediction of gas concentrations 96 4.3.6 Investigation of operational stability and humidity impact 99 4.4 Conclusions 102 Chapter 5 Machine Learning Assisted Wavelength Recognition in Cu2O/Si Self-Powered Photodetector Arrays for Advanced Image Sensing Applications 104 5.1 Introduction 104 5.2 Materials and methods 107 5.2.1 Fabrication of Cu2O/Si PDA 107 5.2.2 Materials analysis & device characterization 108 5.2.3 Machine learning-based data processing 109 5.3 Results and discussion 110 5.3.1 Material characterization 110 5.3.2 Cu2O/Si PDA characteristics in the dark and under UV Illumination 115 5.3.3 Energy band structure of Cu2O/Si heterojunction interface 117 5.3.4 Wavelength classification using machine learning algorithms 125 5.3.5 Light intensity prediction using regression models 132 5.3.6 Light intensity impact 134 5.4 Conclusions 138 Chapter 6 Conclusions 139 6.1 Summary 139 6.2 Suggestion for future research 140 Chapter 7 References 141 | - |
| dc.language.iso | en | - |
| dc.subject | 波長識別 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 光學指紋 | zh_TW |
| dc.subject | 光電感測器陣列 | zh_TW |
| dc.subject | 光激活氣體感測器 | zh_TW |
| dc.subject | Machine learning | en |
| dc.subject | Optical fingerprints | en |
| dc.subject | wavelength recognition | en |
| dc.subject | photo detector array | en |
| dc.subject | photochemically-activated gas sensor | en |
| dc.title | 機器學習應用於光電感測元件之研究 | zh_TW |
| dc.title | A Study on the Application of Machine Learning in Optoelectronic Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 黃俊穎 | zh_TW |
| dc.contributor.coadvisor | Chun-Ying Huang | en |
| dc.contributor.oralexamcommittee | 陳正雄;彭朋群;王志銘;蕭惠心 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Shiung Chen;Peng-Chun Peng;Chih-Min Wang;Hui-Hsin Hsiao | en |
| dc.subject.keyword | 機器學習,波長識別,光電感測器陣列,光學指紋,光激活氣體感測器, | zh_TW |
| dc.subject.keyword | Machine learning,photochemically-activated gas sensor,Optical fingerprints,photo detector array,wavelength recognition, | en |
| dc.relation.page | 156 | - |
| dc.identifier.doi | 10.6342/NTU202501465 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2030-07-01 | - |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 44.81 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
