請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 徐婕涵 | zh_TW |
| dc.contributor.author | Chieh-Han Hsu | en |
| dc.date.accessioned | 2025-07-24T16:11:07Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | Afshariani, F., & Roosta, A. (2019). Experimental study and mathematical modeling of biosorption of methylene blue from aqueous solution in a packed bed of microalgae Scenedesmus. Journal of Cleaner Production, 225, 133-142. https://doi.org/10.1016/j.jclepro.2019.03.275
Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2022). Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Science of The Total Environment, 806, 150585. https://doi.org/10.1016/j.scitotenv.2021.150585 Almomani, F., Judd, S., Bhosale, R. R., Shurair, M., Aljaml, K., & Khraisheh, M. (2019). Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Safety and Environmental Protection, 124, 240-250. https://doi.org/10.1016/j.psep.2019.02.009 Appiani, E., Ossola, R., Latch, D. E., Erickson, P. R., & McNeill, K. (2017). Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content. Environmental Science: Processes & Impacts, 19(4), 507-516. https://doi.org/10.1039/C6EM00646A Arora, N., Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M., Pruthi, V., & Chauhan, P. K. (2020). Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture. Bioresource Technology, 297, 122489. https://doi.org/10.1016/j.biortech.2019.122489 Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1), 315-331. https://doi.org/10.1016/S0044-8486(96)01501-3 Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. https://doi.org/10.1063/1.555805 Cai, T., Zhang, X., Zhang, S., Ming, Y., & Zhang, Q. (2023). Photochemical behaviors of dissolved organic matter in aquatic environment: Generation, characterization, influencing factors and practical application. Environmental Research, 231, 116174. https://doi.org/10.1016/j.envres.2023.116174 Chandra, R., Pradhan, S., Patel, A., & Ghosh, U. K. (2021). An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. Journal of Environmental Management, 297, 113210. https://doi.org/10.1016/j.jenvman.2021.113210 Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24), 5701-5710. https://doi.org/10.1021/es034354c da Rosa, A. L. D., Carissimi, E., Dotto, G. L., Sander, H., & Feris, L. A. (2018). Biosorption of Rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. Journal of Cleaner Production, 198, 1302-1310. https://doi.org/10.1016/j.jclepro.2018.07.128 de Godos, I., Muñoz, R., & Guieysse, B. (2012). Tetracycline removal during wastewater treatment in high-rate algal ponds. Journal of Hazardous Materials, 229-230, 446-449. https://doi.org/10.1016/j.jhazmat.2012.05.106 de Wilt, A., Butkovskyi, A., Tuantet, K., Leal, L. H., Fernandes, T. V., Langenhoff, A., & Zeeman, G. (2016). Micropollutant removal in an algal treatment system fed with source separated wastewater streams. Journal of Hazardous Materials, 304, 84-92. https://doi.org/10.1016/j.jhazmat.2015.10.033 Domínguez, L., Rodríguez, M., & Prats, D. (2010). Effect of different extraction methods on bound EPS from MBR sludges. Part I: Influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint. Desalination, 261(1), 19-26. https://doi.org/10.1016/j.desal.2010.05.054 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 Ethiraj, S., Samuel, M. S., & S.M, I. (2024). A comprehensive review of the challenges and opportunities in microalgae-based wastewater treatment for eliminating organic, inorganic, and emerging pollutants. Biocatalysis and Agricultural Biotechnology, 60, 103316. https://doi.org/10.1016/j.bcab.2024.103316 Gao, F., Yang, L., Chen, A.-J., Zhou, W.-H., Chen, D.-Z., & Chen, J.-M. (2022). Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa. Bioresource Technology, 351, 126900. https://doi.org/10.1016/j.biortech.2022.126900 Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X., & Xie, Q. (2010). Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents. Environmental Science & Technology, 44(7), 2400-2405. https://doi.org/10.1021/es902852v Ge, L., Deng, H., Wu, F., & Deng, N. (2009). Microalgae-promoted photodegradation of two endocrine disrupters in aqueous solutions. Journal of Chemical Technology & Biotechnology, 84(3), 331-336. https://doi.org/10.1002/jctb.2043 Gojkovic, Z., Lindberg, R. H., Tysklind, M., & Funk, C. (2019). Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol Environ Saf, 170, 644-656. https://doi.org/10.1016/j.ecoenv.2018.12.032 Gondi, R., Kavitha, S., Yukesh Kannah, R., Parthiba Karthikeyan, O., Kumar, G., Kumar Tyagi, V., & Rajesh Banu, J. (2022). Algal-based system for removal of emerging pollutants from wastewater: A review. Bioresource Technology, 344, 126245. https://doi.org/10.1016/j.biortech.2021.126245 Gurau, S., Imran, M., & Ray, R. L. (2025). Algae: A cutting-edge solution for enhancing soil health and accelerating carbon sequestration – A review. Environmental Technology & Innovation, 37, 103980. https://doi.org/10.1016/j.eti.2024.103980 Hena, S., Gutierrez, L., & Croué, J.-P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.124041 Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D., & Blánquez, P. (2015). Microalgae cultivation on wastewater digestate: β-estradiol and 17αethynylestradiol degradation and transformation products identification. Journal of Environmental Management, 155, 106-113. https://doi.org/10.1016/j.jenvman.2015.03.003 Hom-Diaz, A., Norvill, Z. N., Blánquez, P., Vicent, T., & Guieysse, B. (2017). Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemosphere, 180, 33-41. https://doi.org/10.1016/j.chemosphere.2017.03.125 Hsiao, H.-Y., Lin, H. H.-H., Yang, J.-S., Hsieh, M.-C., Wu, P.-H., Yu, C.-P., & Lin, A. Y.-C. (2021). Intracellular organic matter from Chlorella vulgaris enhances the photodegradation of acetaminophen. Chemosphere, 271, 129507. https://doi.org/10.1016/j.chemosphere.2020.129507 Hua, L.-C., Lin, J.-L., Chen, P.-C., & Huang, C. (2017). Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts. Chemical Engineering Journal, 328, 1022-1030. https://doi.org/10.1016/j.cej.2017.07.123 Huang, K.-X., Vadiveloo, A., Zhou, J.-L., Yang, L., Chen, D.-Z., & Gao, F. (2023). Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. Bioresource Technology, 376, 128941. https://doi.org/10.1016/j.biortech.2023.128941 Hughes, A. H., Magot, F., Tawfike, A. F., Rad-Menéndez, C., Thomas, N., Young, L. C., Stucchi, L., Carettoni, D., Stanley, M. S., Edrada-Ebel, R., & Duncan, K. R. (2021). Exploring the chemical space of macro- and micro-algae using comparative metabolomics. Microorganisms, 9(2). https://doi.org/10.3390/microorganisms9020311 Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., & Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40(6), 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002 Jiang, R., Wei, Y., Sun, J., Wang, J., Zhao, Z., Liu, Y., Li, X., & Cao, J. (2019). Degradation of cefradine in alga-containing water environment: A mechanism and kinetic study. Environmental Science and Pollution Research, 26(9), 9184-9192. https://doi.org/10.1007/s11356-019-04279-y Jin, L., Zhang, G., & Tian, H. (2014). Current state of sewage treatment in China. Water Research, 66, 85-98. https://doi.org/10.1016/j.watres.2014.08.014 Kandasamy, S., Zhang, B., He, Z., Bhuvanendran, N., El-Seesy, A. I., Wang, Q., Narayanan, M., Thangavel, P., & Dar, M. A. (2022). Microalgae as a multipotential role in commercial applications: Current scenario and future perspectives. Fuel, 308, 122053. https://doi.org/10.1016/j.fuel.2021.122053 Kapoor, D. U., Kukkar, M. R., Gaur, M., Prajapati, B. G., Suttiruengwong, S., & Sriamornsak, P. (2024). Algae as third-generation materials: Exploring the emerging role in pharmaceutical applications. Materials Today Sustainability, 27, 100935. https://doi.org/10.1016/j.mtsust.2024.100935 Kholssi, R., Lougraimzi, H., Grina, F., Lorentz, J. F., Silva, I., Castaño-Sánchez, O., & Marks, E. A. N. (2022). Green agriculture: A review of the application of micro- and macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition, 22(4), 4627-4641. https://doi.org/10.1007/s42729-022-00944-3 Leng, L., Wei, L., Xiong, Q., Xu, S., Li, W., Lv, S., Lu, Q., Wan, L., Wen, Z., & Zhou, W. (2020). Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere, 238, 124680. https://doi.org/10.1016/j.chemosphere.2019.124680 Li, L., Gao, N., Deng, Y., Yao, J., & Zhang, K. (2012). Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Research, 46(4), 1233-1240. https://doi.org/10.1016/j.watres.2011.12.026 Li, L., Guo, H., Shao, C., Yu, S., Yin, D., Gao, N., & Lu, N. (2015). Effect of algal organic matter (AOM) extracted from Microcystis aeruginosa on photodegradation of Diuron. Chemical Engineering Journal, 281, 265-271. https://doi.org/10.1016/j.cej.2015.06.091 Li, S., & Hu, J. (2016). Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. Journal of Hazardous Materials, 318, 134-144. https://doi.org/10.1016/j.jhazmat.2016.05.100 Li, W., Jin, W., Wu, D., Wang, C., Xu, H., & Song, N. (2024). The substantial generation of photochemically produced reactive intermediates (PPRIs) in algae-type zones from one large shallow lake promoted the removal of organic pollutants. Science of The Total Environment, 954, 176821. https://doi.org/10.1016/j.scitotenv.2024.176821 Liu, R., Li, S., Tu, Y., & Hao, X. (2021). Capabilities and mechanisms of microalgae on removing micropollutants from wastewater: A review. Journal of Environmental Management, 285, 112149. https://doi.org/10.1016/j.jenvman.2021.112149 Liu, Y.-J., Gu, J., & Liu, Y. (2018). Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward. Bioresource Technology, 269, 513-519. https://doi.org/10.1016/j.biortech.2018.08.104 Luo, L., Lai, X., Chen, B., Lin, L., Fang, L., Tam, N. F. Y., & Luan, T. (2015). Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water. Scientific Reports, 5(1), 12776. https://doi.org/10.1038/srep12776 Ly, Q. V., Lee, M.-H., & Hur, J. (2019). Using fluorescence surrogates to track algogenic dissolved organic matter (AOM) during growth and coagulation/flocculation processes of green algae. Journal of Environmental Sciences, 79, 311-320. https://doi.org/10.1016/j.jes.2018.12.006 Mangalgiri, K. P., & Blaney, L. (2017). Elucidating the stimulatory and inhibitory effects of dissolved organic matter from poultry litter on photodegradation of antibiotics. Environmental Science & Technology, 51(21), 12310-12320. https://doi.org/10.1021/acs.est.7b03482 Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020 McKay, G., Couch, K. D., Mezyk, S. P., & Rosario-Ortiz, F. L. (2016). Investigation of the coupled effects of molecular weight and charge-transfer interactions on the optical and photochemical properties of dissolved organic matter. Environmental Science & Technology, 50(15), 8093-8102. https://doi.org/10.1021/acs.est.6b02109 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1), 38-48. https://doi.org/10.4319/lo.2001.46.1.0038 McNeill, K., & Canonica, S. (2016). Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties. Environmental Science: Processes & Impacts, 18(11), 1381-1399. https://doi.org/10.1039/C6EM00408C Mehariya, S., Das, P., Thaher, M. I., Abdul Quadir, M., Khan, S., Sayadi, S., Hawari, A. H., Verma, P., Bhatia, S. K., Karthikeyan, O. P., Zuorro, A., & Al-Jabri, H. (2024). Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. Chemosphere, 351, 141245. https://doi.org/10.1016/j.chemosphere.2024.141245 Michelon, W., Zuchi, I. D. P., Reis, J. G., Matthiensen, A., Viancelli, A., da Cruz, A. C. C., Silva, I. T., Fongaro, G., & Soares, H. M. (2022). Virucidal activity of microalgae extracts harvested during phycoremediation of swine wastewater. Environmental Science and Pollution Research, 29(19), 28565-28571. https://doi.org/10.1007/s11356-021-17912-6 Mohd Udaiyappan, A. F., Abu Hasan, H., Takriff, M. S., & Sheikh Abdullah, S. R. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21. https://doi.org/10.1016/j.jwpe.2017.09.006 Norvill, Z. N., Shilton, A., & Guieysse, B. (2016). Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. Journal of Hazardous Materials, 313, 291-309. https://doi.org/10.1016/j.jhazmat.2016.03.085 Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. https://doi.org/10.1016/j.algal.2016.05.033 Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., Jr., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299 Peng, F.-Q., Ying, G.-G., Yang, B., Liu, Y.-S., Lai, H.-J., Zhou, G.-J., Chen, J., & Zhao, J.-L. (2014). Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae. Environmental Toxicology and Chemistry, 33(8), 1705-1711. https://doi.org/10.1002/etc.2589 Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617-629. https://doi.org/10.1016/j.jclepro.2018.10.288 Priyadharshini, S. D., Palanisamy, S. B., Sivasubramanian, M., Ramasamy, S., Muthusamy, G., & Natchimuthu, K. (2021). Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and longterm remediation. Environmental Pollution, 290, 117989. https://doi.org/10.1016/j.envpol.2021.117989 Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40-51. https://doi.org/10.1111/1477-8947.12187 Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., & Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46(9), 2881-2890. https://doi.org/10.1016/j.watres.2012.02.045 Rebelo, S. L. H., Melo, A., Coimbra, R., Azenha, M. E., Pereira, M. M., Burrows, H. D., & Sarakha, M. (2007). Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers. Environmental Chemistry Letters, 5(1), 29-33. https://doi.org/10.1007/s10311-006-0072-z Rosario-Ortiz, F. L., & Canonica, S. (2016). Probe compounds to assess the photochemical activity of dissolved organic matter. Environmental Science & Technology, 50(23), 12532-12547. https://doi.org/10.1021/acs.est.6b02776 Senesi, N., Miano, T. M., Provenzano, M. R., & Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Science, 152(4), 259-271. https://doi.org/10.1097/00010694-199110000-00004 Sharpless, C. M., & Blough, N. V. (2014). The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environmental Science: Processes & Impacts, 16(4), 654-671. https://doi.org/10.1039/C3EM00573A Song, C., Wei, Y., Sun, J., Song, Y., Li, S., & Kitamura, Y. (2020). Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38. Bioresource Technology, 296, 122320. https://doi.org/10.1016/j.biortech.2019.122320 Song, W., Bardowell, S., & O'Shea, K. E. (2007). Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environmental Science & Technology, 41(15), 5336-5341. https://doi.org/10.1021/es063066o Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z., & Wang, G. (2022). The promising way to treat wastewater by microalgae: Approaches, mechanisms, applications and challenges. Journal of Water Process Engineering, 49, 103012. https://doi.org/10.1016/j.jwpe.2022.103012 Soto, M. F., Diaz, C. A., Zapata, A. M., & Higuita, J. C. (2021). BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochemical Engineering Journal, 176, 108191. https://doi.org/10.1016/j.bej.2021.108191 Sutherland, D. L., & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Research, 164, 114921. https://doi.org/10.1016/j.watres.2019.114921 Tenorio, R., Fedders, A. C., Strathmann, T. J., & Guest, J. S. (2017). Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems. Environmental Science: Water Research & Technology, 3(6), 1095-1108. https://doi.org/10.1039/C7EW00172J Tian, L., Li, Y., Yang, J., Qin, L., Ma, H., Zhu, L., & Yin, Z. (2024). Promoting the achievement of wastewater treatment by microalgae-based co-culture systems: From interactions mechanisms to pollution control performance. Energy Conversion and Management, 320, 118981. https://doi.org/10.1016/j.enconman.2024.118981 Tian, Y., Wei, L., Yin, Z., Feng, L., Zhang, L., Liu, Y., & Zhang, L. (2019). Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure. Water Research, 164, 114940. https://doi.org/10.1016/j.watres.2019.114940 Tian, Y., Zou, J., Feng, L., Zhang, L., & Liu, Y. (2019). Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs. Water Research, 149, 35-41. https://doi.org/10.1016/j.watres.2018.10.076 Villacorte, L. O., Ekowati, Y., Neu, T. R., Kleijn, J. M., Winters, H., Amy, G., Schippers, J. C., & Kennedy, M. D. (2015). Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Research, 73, 216-230. https://doi.org/10.1016/j.watres.2015.01.028 Villar-Navarro, E., Baena-Nogueras, R. M., Paniw, M., Perales, J. A., & Lara-Martín, P. A. (2018). Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Research, 139, 19-29. https://doi.org/10.1016/j.watres.2018.03.072 Wang, F.-X., Zhang, Z.-C., & Wang, C.-C. (2023). Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: A mini review. Chemical Engineering Journal, 459, 141538. https://doi.org/10.1016/j.cej.2023.141538 Wang, H., Qi, M., Bo, Y., Zhou, C., Yan, X., Wang, G., & Cheng, P. (2021). Treatment of fishery wastewater by co-culture of Thalassiosira pseudonana with Isochrysis galbana and evaluation of their active components. Algal Research, 60, 102498. https://doi.org/10.1016/j.algal.2021.102498 Wang, L., Zhang, C., Wu, F., & Deng, N. (2007). Photodegradation of aniline in aqueous suspensions of microalgae. Journal of Photochemistry and Photobiology B: Biology, 87(1), 49-57. https://doi.org/10.1016/j.jphotobiol.2006.12.006 Wei, L., Li, H., & Lu, J. (2021). Algae-induced photodegradation of antibiotics: A review. Environmental Pollution, 272, 115589. https://doi.org/10.1016/j.envpol.2020.115589 Wu, P.-H., Yeh, H.-Y., Chou, P.-H., Hsiao, W.-W., & Yu, C.-P. (2021). Algal extracellular organic matter mediated photocatalytic degradation of estrogens. Ecotoxicology and Environmental Safety, 209, 111818. https://doi.org/10.1016/j.ecoenv.2020.111818 Xiao, G., Xu, T., Faheem, M., Xi, Y., Zhou, T., Moryani, H. T., Bao, J., & Du, J. (2021). Evolution of singlet oxygen by activating peroxydisulfate and peroxymonosulfate: A Review. International Journal of Environmental Research and Public Health, 18(7), 3344. https://doi.org/10.3390/ijerph18073344 Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34(7), 1225-1244. https://doi.org/10.1016/j.biotechadv.2016.08.004 Xiong, J.-Q., Kurade, M. B., Abou-Shanab, R. A. I., Ji, M.-K., Choi, J., Kim, J. O., & Jeon, B.-H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology, 205, 183-190. https://doi.org/10.1016/j.biortech.2016.01.038 Xiong, J.-Q., Kurade, M. B., & Jeon, B.-H. (2018). Can microalgae remove pharmaceutical contaminants from water? Trends in Biotechnology, 36(1), 30-44. https://doi.org/10.1016/j.tibtech.2017.09.003 Xu, H., Cooper, W. J., Jung, J., & Song, W. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. https://doi.org/10.1016/j.watres.2010.08.024 Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., & Rajendran, K. (2021). Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel, 285, 119093. https://doi.org/10.1016/j.fuel.2020.119093 Yang, X., Zheng, X., Wu, L., Cao, X., Li, Y., Niu, J., & Meng, F. (2018). Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters. Environmental Pollution, 242, 1185-1197. https://doi.org/10.1016/j.envpol.2018.07.099 Yu, K. L., Show, P. L., Ong, H. C., Ling, T. C., Chi-Wei Lan, J., Chen, W.-H., & Chang, J.-S. (2017). Microalgae from wastewater treatment to biochar – Feedstock preparation and conversion technologies. Energy Conversion and Management, 150, 1-13. https://doi.org/10.1016/j.enconman.2017.07.060 Zhang, J., Fu, D., & Wu, J. (2012). Photodegradation of Norfloxacin in aqueous solution containing algae. Journal of Environmental Sciences, 24(4), 743-749. https://doi.org/10.1016/S1001-0742(11)60814-0 Zhang, Q., Hu, J., Lee, D.-J., Chang, Y., & Lee, Y.-J. (2017). Sludge treatment: Current research trends. Bioresource Technology, 243, 1159-1172. https://doi.org/10.1016/j.biortech.2017.07.070 Zhou, H., Lian, L., Yan, S., & Song, W. (2017). Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents. Water Research, 112, 120-128. https://doi.org/10.1016/j.watres.2017.01.048 Zhou, J.-L., Yang, L., Huang, K.-X., Chen, D.-Z., & Gao, F. (2022). Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. Bioresource Technology, 364, 128049. https://doi.org/10.1016/j.biortech.2022.128049 Zhou, T., Zhang, Z., Liu, H., Dong, S., Nghiem, L. D., Gao, L., Chaves, A. V., Zamyadi, A., Li, X., & Wang, Q. (2023). A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. Journal of Hazardous Materials, 443, 130213. https://doi.org/10.1016/j.jhazmat.2022.130213 Zuo, Y.-T., Wu, J., Cheng, S., Cai, M.-H., Han, Y.-Z., Ji, W.-X., Li, Y., Huo, Z.-L., Korshin, G., Li, W.-T., & Li, A.-M. (2022). Identification of pterins as characteristic humic-like fluorophores released from cyanobacteria and their behavior and fate in natural and engineered water systems. Chemical Engineering Journal, 428, 131154. https://doi.org/10.1016/j.cej.2021.131154 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98098 | - |
| dc.description.abstract | 目前將藻類應用於廢水處理程序的研究備受關注,微藻可以經由生物代謝過程去除水中的污染物,且相關研究已證實藻類有機物富含光敏性結構,經光催化後可提高污染物的降解效率。然而,何種波長光源及有機物分子量區間對活性物質的生成影響尚未釐清,故本研究旨在探討不同光源波長及有機物分子量區間對活性物質(三重激發態有機物 3EOM*、單線態氧 1O2及氫氧自由基・OH)的生成影響,以作為未來微藻有機物應用於光催化處理之參考依據。
本研究實驗分為兩階段,第一階段以不同波長光源(紅、黃、藍色LED燈)進行光催化反應,找出活性物質生成效果最佳之光源;第二階段以最佳光源(藍光)及模擬日光作為對照光源,並結合超濾膜過濾裝置將微藻有機物分成三個分子量區間(<10 kDa、10-100 kDa 及>100 kDa)進行光催化,並透過觀測反應速率常數(k'obs)及穩態濃度評估活性物質的生成行為,同時以總有機碳、多醣、蛋白質及螢光激發-發射矩陣(EEM)探討有機物組成變化。 研究結果顯示,活性物質生成速率明顯受光源波長所影響,短波長、高能量的藍光可顯著提升3EOM*及 1O2之生成效率,k'obs分別為 0.0057 h-1及 0.00148 h-1,遠高於黃光及紅光之結果。且1O2的穩態濃度(4.1 × 10-15 M)高於3EOM*,其原因為1O2具有相對較高的反應選擇性及較低的消耗速率。此外,超濾光催化結果顯示,3EOM*和・OH於低分子量區間(<10 kDa)呈現較佳之生成速率。EEM結果指出,活性物質的生成與類腐植酸物質之消耗密切相關,且中高分子量區間(10-100 kDa 及>100 kDa)之類蛋白質物質有助於1O2的生成。而螢光指數(FI)、腐植化指數(HIX)及生物性指數(BIX)變化顯示,光催化過程中會使有機物組成趨於自源性、高生物性與低腐植化特性。整體而言,3EOM*為本研究中兼具高反應性及生成速率之主要活性物質;1O2則展現出反應穩定性且持續生成的能力;而・OH則為系統中生成效率相對較低之活性物質。 | zh_TW |
| dc.description.abstract | The application of microalgae in wastewater treatment processes has attracted considerable attention in recent years. Microalgae can effectively remove pollutants from water through biological metabolism, and previous studies have demonstrated that algal organic matter is rich in photosensitizing structures, which can enhance pollutant degradation efficiency through photocatalytic processes. However, the influence of different light source wavelengths and molecular weight fractions of organic matter on the generation of reactive species remains unclear. Therefore, this study aimed to investigate the effects of light source wavelength and molecular weight fractions of EOM on the generation behavior of reactive species (triplet excited-state organic matter, 3EOM*; singlet oxygen, 1O2; and hydroxyl radicals,・OH), providing a scientific basis for the future application of algal organic matter in photocatalytic wastewater treatment.
This study was conducted in two phases. In the first phase, photocatalytic experiments were performed under different light source wavelengths (red, yellow, and blue LEDs) to identify the most effective light source for reactive species generation. In the second phase, the optimal light source (blue light) and simulated sunlight (as the control) were applied, combined with an ultrafiltration system to separate EOM into three molecular weight fractions (<10 kDa, 10-100 kDa, and >100 kDa) for subsequent photocatalytic experiments. The generation behavior of reactive species was evaluated by monitoring the observed reaction rate constants (k'obs) and steady-state concentrations, while changes in organic matter composition were investigated through total organic carbon (TOC), polysaccharides, proteins, and fluorescence excitation-emission matrix (EEM) analysis. The results showed that the generation rate of reactive species was significantly influenced by the light source wavelength. The short-wavelength, high-energy blue light markedly enhanced the generation efficiency of 3EOM* and 1O2, with k'obs values of 0.0057 h-1 and 0.00148 h-1, respectively, which were substantially higher than those observed under yellow and red light. Moreover, the steady-state concentration of 1O2 (4.1 × 10-15 M) was higher than that of 3EOM*, reflecting its relatively higher reaction selectivity and lower consumption rate. The ultrafiltration-photocatalysis results indicated that 3EOM* and ・OH exhibited superior generation rates in the low molecular weight fraction (<10 kDa). EEM analysis revealed that reactive species generation was closely associated with the consumption of humic-like substances, and that protein-like substances in the medium-to-high molecular weight fractions (10-100 kDa, and >100 kDa) contributed to 1O2 generation. Moreover, variations in fluorescence index (FI), humification index (HIX), and biological index (BIX) indicated that the photocatalytic process drove the organic matter composition toward more autochthonous, bioactive, and less humified characteristics. Overall, 3EOM* was identified as the primary reactive species in this system, exhibiting both high reaction rate and generation potential; 1O2 demonstrated stable and sustained generation capability, whereas ・OH contributed relatively less to the system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:11:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:11:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
致謝 iii 摘要 v Abstract vii 目次 xi 圖次 xv 表次 xvii 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻探討 3 2.1 微藻的特性與介紹 3 2.1.1 藻類的介紹 3 2.1.2 微藻的生理特徵與代謝產物 3 2.2 微藻應用於污水處理 5 2.2.1 水資源問題 5 2.2.2 傳統污水處理之侷限性 5 2.2.3 藻類應用於污水處理 6 2.3 微藻去除污染物機制 8 2.3.1 生物吸附(biosorption) 8 2.3.2 生物累積(bioaccumulation) 9 2.3.3 生物降解(biodegradation) 10 2.3.4 光降解(photodegradation) 12 2.4 微藻有機物應用於光催化 15 2.4.1 藻類代謝產生之有機物 15 2.4.2 有機物參與光催化之機制 16 2.4.3 微藻有機物應用於光催化案例 18 第三章 研究方法 21 3.1 實驗藥品與設備 21 3.1.1 實驗用藥品 21 3.1.2 實驗用儀器設備 23 3.2 實驗流程圖 25 3.3 藻類培養 26 3.4 萃取藻類有機物 28 3.5 光催化批次實驗 28 3.6 有機物分離 29 3.7 其他實驗分析方法 30 3.6.1 藻類濃度測量 30 3.6.2 總有機碳分析 31 3.6.3 活性物質測量 32 3.6.4 多醣定量分析 33 3.6.5 蛋白質分析 34 3.6.6 螢光激發-發射矩陣 35 第四章 結果與討論 37 4.1 不同波長光源之光催化實驗 37 4.1.1 模擬日光照射下之活性物質生成 37 4.1.2 藍光、紅光、黃光照射下之活性物質生成 40 4.1.3 觀測反應速率常數與穩態濃度比較 43 4.2 超濾微藻有機物結合光催化實驗 46 4.2.1 不同分子量區間及光源下之活性物質生成 46 4.2.2 觀測反應速率常數與穩態濃度比較 53 4.2.3 有機物之組成變化 58 4.2.4 各分子量區間有機物之EEM結果 63 第五章 結論與建議 69 5.1 結論 69 5.2 建議 71 參考文獻 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光源波長效應 | zh_TW |
| dc.subject | 分子量區間 | zh_TW |
| dc.subject | 活性物質生成 | zh_TW |
| dc.subject | 光催化 | zh_TW |
| dc.subject | 藻類有機物 | zh_TW |
| dc.subject | Molecular weight fractions | en |
| dc.subject | Algal organic matter | en |
| dc.subject | Photocatalytic reaction | en |
| dc.subject | Reactive species generation | en |
| dc.subject | Light source wavelength effect | en |
| dc.title | 利用不同波長的光進行藻類有機物的光催化以探討活性物質的產生情形 | zh_TW |
| dc.title | Using different wavelengths of light to conduct photocatalysis of algae organic matter to explore the generation of reactive species | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林逸彬;周佩欣 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Pin Lin;Pei-Hsin Chou | en |
| dc.subject.keyword | 藻類有機物,光催化,活性物質生成,光源波長效應,分子量區間, | zh_TW |
| dc.subject.keyword | Algal organic matter,Photocatalytic reaction,Reactive species generation,Light source wavelength effect,Molecular weight fractions, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202501924 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
