Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98082
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-li Sunen
dc.contributor.author陳育瑭zh_TW
dc.contributor.authorYu-Tang Chenen
dc.date.accessioned2025-07-24T16:07:31Z-
dc.date.available2025-07-25-
dc.date.copyright2025-07-24-
dc.date.issued2025-
dc.date.submitted2025-07-11-
dc.identifier.citation[1]I.E.A, "Electricity 2024: Analysis and Forecast to 2026," International Energy Agency, Paris, France, 2024. [Online]. Available: https://www. iea. org/reports/electricity-2024
[2]NVIDIA."NVIDIA H100 Tensor 核心 GPU." Available: https://www.nvidia.com/zh-tw/data-center/h100/.
[3]D. Bizo, R. Ascierto, A. Lawrence, and J. Davis, "Uptime Institute global data center survey 2021," Uptime Institute, SEATTLE, WA, USA, UII-51 V1.1M, 2021. [Online]. Available: https://uptimeinstitute.com/resources/research-and-reports/2021-data-center-industry-survey-results
[4]H. Zhang, S. Shao, H. Xu, H. Zou, and C. Tian, "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, vol. 35, pp. 171-182, 2014, doi: 10.1016/j.rser.2014.04.017.
[5]A. H. Khalaj and S. K. Halgamuge, "A Review on efficient thermal management of air-and liquid-cooled data centers: From chip to the cooling system," Applied Energy, vol. 205, pp. 1165-1188, 2017, doi: 10.1016/j.apenergy.2017.08.037.
[6]S. V. Garimella, L.-T. Yeh, and T. Persoons, "Thermal management challenges in telecommunication systems and data centers," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, pp. 1307-1316, 2012, doi: 10.1109/TCPMT.2012.2185797.
[7]R. Kong, H. Zhang, M. Tang, H. Zou, C. Tian, and T. Ding, "Enhancing data center cooling efficiency and ability: A comprehensive review of direct liquid cooling technologies," Energy, vol. 308, p. 132846, 2024, doi: 10.1016/j.energy.2024.132846.
[8]A. Inbaoli, C. S. Kumar, and S. Jayaraj, "A review on techniques to alter the bubble dynamics in pool boiling," Applied Thermal Engineering, vol. 214, p. 118805, 2022, doi: 10.1016/j.applthermaleng.2022.118805.
[9]V. Devahdhanush and I. Mudawar, "Review of critical heat flux (CHF) in jet impingement boiling," International Journal of Heat and Mass Transfer, vol. 169, p. 120893, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120893.
[10]A. H. Howard and I. Mudawar, "Orientation effects on pool boiling critical heat flux (CHF) and modeling of CHF for near-vertical surfaces," International Journal of Heat and Mass Transfer, vol. 42, no. 9, pp. 1665-1688, 1999, doi: 10.1016/S0017-9310(98)00233-6.
[11]M. S. El-Genk and H. Bostanci, "Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip," International Journal of Heat and Mass Transfer, vol. 46, no. 10, pp. 1841-1854, 2003, doi: 10.1016/S0017-9310(02)00489-1.
[12]M. Monde and Y. Katto, "Burnout in a high heat-flux boiling system with an impinging jet," International Journal of Heat and Mass Transfer, vol. 21, no. 3, pp. 295-305, 1978, doi: 10.1016/0017-9310(78)90122-9.
[13]Y.-h. Qiu and Z.-h. Liu, "Nucleate boiling on the superhydrophilic surface with a small water impingement jet," International Journal of Heat and Mass Transfer, vol. 51, no. 7-8, pp. 1683-1690, 2008, doi: 10.1016/j.ijheatmasstransfer.2007.07.049.
[14]M. J. Rau and S. V. Garimella, "Confined Jet Impingement With Boiling on a Variety of Enhanced Surfaces," Journal of Heat Transfer, vol. 136, no. 10, 2014, doi: 10.1115/1.4027942.
[15]R. Cardenas and V. Narayanan, "Heat transfer characteristics of submerged jet impingement boiling of saturated FC-72," International Journal of Heat and Mass Transfer, vol. 55, no. 15-16, pp. 4217-4231, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.063.
[16]S. Fan and F. Duan, "Correlations for heat transfer characteristics of the onset of nucleate boiling in submerged jet impingement," International Journal of Thermal Sciences, vol. 170, p. 107071, 2021, doi: 10.1016/j.ijthermalsci.2021.107071.
[17]V. Devahdhanush and I. Mudawar, "Critical heat flux of confined round single jet and jet array impingement boiling," International Journal of Heat and Mass Transfer, vol. 169, p. 120857, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120857.
[18]M. J. Rau and S. V. Garimella, "Local two-phase heat transfer from arrays of confined and submerged impinging jets," International Journal of Heat and Mass Transfer, vol. 67, pp. 487-498, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.08.041.
[19]F. Cui, F. Hong, and P. Cheng, "Comparison of normal and distributed jet array impingement boiling of HFE-7000 on smooth and pin-fin surfaces," International Journal of Heat and Mass Transfer, vol. 126, pp. 1287-1298, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.06.058.
[20]3M."3M™ Novec™ 7100 Engineered Fluid." Available: https://www.3m.com/3M/en_US/p/d/b40044867/.
[21]Intel."Intel® Xeon® Scalable processors platinum products." Available: https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/platinum/products.html.
[22]LabVIEW. (2014). National Instruments, TX, USA. [Online]. Available: https://www.ni.com/en/shop/labview.html
[23]S. W. Churchill and H. H. Chu, "Correlating equations for laminar and turbulent free convection from a vertical plate," International Journal of Heat and Mass Transfer, vol. 18, no. 11, pp. 1323-1329, 1975, doi: 10.1016/0017-9310(75)90243-4.
[24]F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Incropera's Principles of Heat and Mass Transfer, 8th edition, Global edition ed. Hoboken, NJ, USA: Wiley, 2017.
[25]C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis," Nature Methods, vol. 9, pp. 671-675, 2012, doi: 10.1038/nmeth.2089.
[26]N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, and L. Gustafson, "Sam 2: Segment anything in images and videos," arXiv preprint arXiv:2408.00714, 2024. [Online]. Available: https://arxiv.org/abs/2408.00714.
[27]C.-M. Wang, "Enhanced saturated pool boiling in HFE-7100 by diverging pin-fin-array," M.S. Thesis, National Taiwan University, Taipei.
[28]M.-Y. Tsai, "Enhanced saturated pool boiling in dielectric liquid HFE-7100 by utilizing diverging pin-fin array and jet impingement," M.S. Thesis, National Taiwan University, Taipei.
[29]I. Mudawar, A. H. Howard, and C. O. Gersey, "An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces," International Journal of Heat and Mass Transfer, vol. 40, no. 10, pp. 2327-2339, 1997, doi: 10.1016/S0017-9310(96)00298-0.
[30]P. Griffith and J. D. Wallis, "The role of surface conditions in nucleate boiling," Massachusetts Institute of Technology, Heat Transfer Laboratory, Cambridge, MA, USA, 1958. [Online]. Available: http://hdl.handle.net/1721.1/61453
[31]Y. Y. Hsu, "On the size range of active nucleation cavities on a heating surface," Heat Transfer, vol. 84, pp. 207-213, 1962, doi: 10.1115/1.3684339.
[32]Y. Katto and M. Kunihiro, "Study of the mechanism of burn-out in boiling system of high burn-out heat flux," Bulletin of JSME, vol. 16, no. 99, pp. 1357-1366, 1973, doi: 10.1299/jsme1958.16.1357.
[33]D. Zhou and C. Ma, "Local jet impingement boiling heat transfer with R113," Heat and Mass Transfer, vol. 40, pp. 539-549, 2004, doi: 10.1007/s00231-003-0463-7.
[34]J. Galloway and I. Mudawar, "CHF mechanism in flow boiling from a short heated wall—II. Theoretical CHF model," International Journal of Heat and Mass Transfer, vol. 36, pp. 2527-2540, 1993, doi: 10.1016/S0017-9310(05)80191-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98082-
dc.description.abstract本研究旨在探討於飽和沸騰條件下,應用向上平行噴流陣列結合壁面結構設計,以提升 HFE-7100於垂直加熱壁面之熱傳性能。實驗中,平行噴流陣列設置於加熱壁面底部,噴流出口與壁面垂直的距離 5 mm處。實驗設計涵蓋兩種噴流速度,分別為vPJA = 1.04 m s-1 和 vPJA = 3.91 m s-1,以及五種壁面結構,分別為光滑壁面、一致型圓柱、一致型魚鱗、漸擴型圓柱與漸擴型魚鱗鰭片陣列。
由研究結果可將沸騰劃分為四個階段:第一階段為單相強制對流;第二階段成核點陸續啟動,逐漸轉為雙相強制對流;第三階段則為完全發展的核沸騰,熱傳係數隨壁面熱通量增加而迅速提升;在第四階段中,氣泡開始堆積並於加熱壁面上滑動,形成波浪狀液氣界面,導致沸騰熱傳係數隨壁面過熱度下降並最終達到臨界熱通量。本研究發現,成核點開始啟動所需之壁面過熱度不受噴流速度影響,但其所對應之壁面熱通量則隨噴流速度增加而上升。但當熱通量進一步提升至成核點完全啟動的第三階段時,高速噴流下的壁面過熱度較低速噴流高出約 0.7°C 至 4.2°C,顯示高速噴流對熱邊界層具有更強壓制效果,成核點需較高的壁面過熱度才能維持完全啟動。
在相同噴流速度下,使用鰭片陣列皆能明顯提升熱傳性能與臨界熱通量,特別是漸擴型魚鱗鰭片陣列的熱傳性能最佳。由於該結構具有順應氣泡排除方向的流線型設計,且鰭片間距逐層擴張的設計,能配合平行噴流陣列有效引導氣泡向上排除,使其最高沸騰熱傳係數較光滑表面提升約 58%。值得注意的是,即使於低速噴流條件下,搭配漸擴型鰭片設計之平行噴流陣列可達到 24 W cm-2 的臨界熱通量,優於傳統單噴流衝擊的22 W cm-2。
zh_TW
dc.description.abstractThis study investigates the enhancement of saturated boiling heat transfer of HFE-7100 from a vertical surface by employing an upward parallel jet array and pin-fin arrays designs. Two different jet velocities are used: vPJA = 1.04 m s-1 and vPJA = 3.91 m s-1. The pin-fin array has five different designs: smooth surface (SMO), uniform cylinder (UC), uniform fish scale (UFS), diverging cylinder (DC) and diverging fish scale (DFS).
From the results, boiling can be divided into four regimes. In regime I, heat transfer is dominated by single-phase forced convection. In regime II, nucleation sites progressively activate, transitioning to two-phase forced convection. In regime III, all nucleate boiling sites are activated, and the heat transfer coefficient rapidly increases. In regime IV, vapor bubbles start to accumulate and slide along the heated surface, forming wavy liquid-vapor interfaces that deteriorate heat transfer, eventually leading to critical heat flux (CHF). As jet velocity increases, the heat flux corresponds to onset of nucleate boiling (ONB). However, the wall superheat at the ONB is not affected by jet velocity. In regime III, faster jet results in higher wall superheat though, approximately 0.7°C to 4.2°C higher than that of slower jet. This indicates that the high shear produced by the faster jet strongly suppresses the thermal boundary layer and delays full activation of nucleation sites, leading to a higher required wall superheat. All pin-fin array surfaces can significantly enhance the boiling heat transfer and CHF. In particular, the design of diverging fish scale can facilitate bubble removal, attributed to its streamlined geometry and increasing fin spacing. The diverging pin-fin array can still achieve a CHF of 23~24 W cm-2 under slower jet.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:07:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-24T16:07:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 v
符號索引 ix
圖次 xii
表次 xx
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 加熱表面傾角之影響 3
1.2.2 表面處理之影響 4
1.2.3 噴流參數之影響 5
1.2.4 噴流陣列排列之影響 6
1.3 研究目的 7
第二章 實驗架構與不確定性分析 8
2.1 實驗裝置 8
2.1.1 加熱模組 8
2.1.2 實驗箱體 10
2.1.3 噴流模組 11
2.1.4 溫度擷取系統 12
2.1.5 影像擷取系統 13
2.1.6 冷卻系統 13
2.2 實驗流程 14
2.3 實驗數據分析 16
2.3.1 熱傳性能分析 16
2.3.2 影像處理 18
2.3.3 噴流流速的量測與分析 19
2.4 不確定性分析 21
2.4.1 加熱壁面溫度之不確定性 23
2.4.2 電源供應器功率之不確定性 23
2.4.3 空氣性質之不確定性研究 24
2.4.4 加熱塊各面面積之不確定性 25
2.4.5 加熱塊對流熱傳係數之不確定性 26
2.4.6 加熱塊熱對流損失率之不確定性 27
2.4.7 傳入工作流體熱通量之不確定性 28
2.4.8 沸騰熱傳係數之不確定性 28
2.4.9 噴嘴出口截面積之不確定性 29
2.4.10 泵體積流率之不確定性 29
2.4.11 噴流流速之不確定性 30
第三章 實驗結果與討論 32
3.1 沸騰階段 32
3.2 光滑壁面 (SMO) 之沸騰性能與氣泡行為 33
3.2.1 平行噴流陣列vPJA = 1.04 m s-1 33
3.2.2 平行噴流陣列vPJA = 3.91 m s-1 36
3.2.3 噴流之影響 38
3.3 一致型圓柱鰭片陣列 (UC) 之沸騰性能與氣泡行為 41
3.3.1 平行噴流陣列vPJA = 1.04 m s-1 41
3.3.2 平行噴流陣列vPJA = 3.91 m s-1 43
3.3.3 噴流之影響 45
3.4 一致型魚鱗鰭片陣列 (UFS) 之沸騰性能與氣泡行為 48
3.4.1 平行噴流陣列vPJA = 1.04 m s-1 48
3.4.2 平行噴流陣列vPJA = 3.91 m s-1 50
3.4.3 噴流之影響 52
3.5 漸擴型圓柱鰭片陣列 (DC) 之沸騰性能與氣泡行為 54
3.5.1 平行噴流陣列vPJA = 1.04 m s-1 54
3.5.2 平行噴流陣列vPJA = 3.91 m s-1 56
3.5.3 噴流之影響 58
3.6 漸擴型魚鱗鰭片陣列 (DFS) 之沸騰性能與氣泡行為 61
3.6.1 平行噴流陣列vPJA = 1.04 m s-1 61
3.6.2 平行噴流陣列vPJA = 3.91 m s-1 63
3.6.3 噴流之影響 65
3.7 鰭片設計之影響 68
3.7.1 平行噴流陣列vPJA = 1.04 m s-1 68
3.7.2 平行噴流陣列vPJA = 3.91 m s-1 70
第四章 結論與建議 72
4.1 結論 72
4.2 建議 73
參考文獻 75
附錄 80
Appendix 150
-
dc.language.isozh_TW-
dc.subject兩相浸沒式冷卻zh_TW
dc.subject向上噴流zh_TW
dc.subject平行噴流陣列zh_TW
dc.subject垂直加熱表面zh_TW
dc.subjectupward jeten
dc.subjectparallel jet arrayen
dc.subjecttwo-phase immersion coolingen
dc.subjectvertical surfaceen
dc.title應用向上平行噴流陣列與漸擴型鰭片陣列提升 HFE-7100 在飽和沸騰下之熱傳性能與氣泡可視化分析zh_TW
dc.titleEnhancement of heat transfer performance and bubble visualization in saturated boiling of HFE-7100 using upward parallel jet arrays and diverging pin-fin arraysen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許麗;黃智永;李卓昱zh_TW
dc.contributor.oralexamcommitteeLi Xu;Chih-Yung Huang;Cho-Yu Leeen
dc.subject.keyword向上噴流,平行噴流陣列,垂直加熱表面,兩相浸沒式冷卻,zh_TW
dc.subject.keywordupward jet,parallel jet array,vertical surface,two-phase immersion cooling,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202501469-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-07-25-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
28.32 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved