Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周錫增zh_TW
dc.contributor.advisorHsi-Tseng Chouen
dc.contributor.author李志彥zh_TW
dc.contributor.authorChih-Yen Leeen
dc.date.accessioned2025-07-23T16:38:50Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-18-
dc.identifier.citation[1] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE communications magazine, vol. 49, no. 6, pp. 101-107, 2011.
[2] S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, 2014.
[3] I. L. M. S. Committee, "IEEE standard for high data rate wireless multi-media networks–amendment 2: 100 Gb/s wireless switched point-to-point physical layer," IEEE Std, vol. 802, pp. 1-55, 2017.
[4] W. Hong, K.-h. Baek, and A. Goudelev, "Grid assembly-free 60-GHz antenna module embedded in FR-4 transceiver carrier board," IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1573-1580, 2012.
[5] W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012.
[6] K. Zhang, R. Tan, Z. H. Jiang, Y. Huang, L. Tang, and W. Hong, "A compact, ultrawideband dual-polarized Vivaldi antenna with radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 7, pp. 1323-1327, 2022.
[7] A. K. Amert and K. W. Whites, "Miniaturization of the biconical antenna for ultrawideband applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 12, pp. 3728-3735, 2009.
[8] C. F. Jou, J.-W. Wu, and C.-J. Wang, "Novel broadband monopole antennas with dual-band circular polarization," IEEE transactions on antennas and propagation, vol. 57, no. 4, pp. 1027-1034, 2009.
[9] R. Li, T. Wu, B. Pan, K. Lim, J. Laskar, and M. M. Tentzeris, "Equivalent-circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 2180-2184, 2009.
[10] B. Yu, K. Yang, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Transactions on antennas and propagation, vol. 66, no. 1, pp. 462-466, 2017.
[11] O. Jo, J.-J. Kim, J. Yoon, D. Choi, and W. Hong, "Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beamforming systems," IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6646-6655, 2017.
[12] T.-C. Huang, Y.-W. Hsu, and Y.-C. Lin, "End-fire quasi-Yagi antennas with pattern diversity on LTCC technology for 5G mobile communications," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016: IEEE, pp. 1-3.
[13] T. L. Simpson, "The disk loaded monopole antenna," IEEE Transactions on Antennas and propagation, vol. 52, no. 2, pp. 542-550, 2004.
[14] J. Wang et al., "A low-profile vertically polarized magneto-electric monopole antenna with a 60% bandwidth for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, vol. 69, no. 1, pp. 3-13, 2020.
[15] Z. Yuan, D. Ding, and W. Zhang, "Effect of Thermal via Design on Heat Dissipation of High-Lead QFN Packages Mounted on PCB," Applied Sciences, vol. 13, no. 23, p. 12653, 2023.
[16] A. K. Vallappil, M. K. A. Rahim, B. A. Khawaja, N. A. Murad, and M. G. Mustapha, "Butler matrix based beamforming networks for phased array antenna systems: A comprehensive review and future directions for 5G applications," IEEE Access, vol. 9, pp. 3970-3987, 2020.
[17] S. Omran, M. Rahim, and T. Masri, "Beam-forming network using switch-line phase shifter," in 2007 Asia-Pacific Conference on Applied Electromagnetics, 2007: IEEE, pp. 1-5.
[18] H. Wang, X. Dong, M. Yi, F. Xue, Y. Liu, and G. Liu, "Terahertz high-gain offset reflector antennas using SiC and CFRP material," IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4443-4451, 2017.
[19] T. Zheng and M. S. Bakir, "Electrical Demonstration of an RF Embedded Multi-Chip Module Enabled by Fused-Silica Stitch-Chip Technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024.
[20] H. H. Ghouz and E.-B. El-Sharawy, "An accurate equivalent circuit model of flip chip and via interconnects," IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp. 2543-2554, 1996.
[21] C.-L. Wang and R.-B. Wu, "Modeling and design for electrical performance of wideband flip-chip transition," IEEE Transactions on advanced packaging, vol. 26, no. 4, pp. 385-391, 2003.
[22] C.-H. Li and T.-Y. Chiu, "Low-loss single-band, dual-band, and broadband mm-wave and (sub-) THz interconnects for THz SoP heterogeneous system integration," IEEE transactions on terahertz science and technology, vol. 12, no. 2, pp. 130-143, 2021.
[23] D. Staiculescu, J. Laskar, and E. M. Tentzeris, "Design rule development for microwave flip-chip applications," IEEE transactions on microwave theory and techniques, vol. 48, no. 9, pp. 1476-1481, 2000.
[24] 涂兆宏, "玻璃基板IPD太赫茲天線設計以及太赫茲天線量測系統," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2024. [Online]. Available: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91610
[25] H.-T. Chou, Y.-M. Chen, and C.-Y. Lee, "Novel Antenna-in-Package Design based on End-Fire Radiation Subarray Decomposition to Format Broadside Array at Sub-THz Frequencies," IEEE Transactions on Antennas and Propagation (early access), pp. 1-1, 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98063-
dc.description.abstract在無線通信領域,日益增長的數據流量和多樣化的服務需求對現有的頻譜資源提出了嚴峻挑戰。為了滿足不斷擴大的通信需求,人們開始探索新的高頻頻段,其中毫米波(mmWave)和太赫茲(THz)頻段被認為是很有前景的候選方案[1][2]。這一頻段的優勢在於能夠滿足高頻寬與低延遲的通訊需求,應對不斷增長的數據流量需求。與目前的通信技術相比,次太赫茲(sub-THz)介於上述兩波段之間,其具有高頻譜效率和低功耗的特性,為物聯網、虛擬實境等新興應用提供了強大的技術基礎。
然而,該頻段的應用面臨挑戰,包括高頻電磁波的傳播損耗和有限的傳輸距離,這使得其覆蓋範圍受到限制。大規模相控陣列天線被視為應對這些問題的有效解決方案。這種天線通過電子控制快速調整波束方向,不僅提升了增益,也拓展了覆蓋範圍。但sub-THz的短波長為天線的設計與製造帶來了挑戰。傳統的天線結構通常依賴多層PCB基板,將THz相控晶片安裝在PCB底層,或與天線置於同一平面。由於THz相控晶片的尺寸相對天線過大,這些方式在高頻應用中面臨局限。
我們提出了一種新型的AiP(antenna-in-package)設計,採用end-fire輻射方式,將天線元件設置於基板邊緣,使其輻射方向平行於基板,從而在天線後部保留充足空間以安裝THz相控晶片和其他相關電路。具體設計中,我們利用多層一維(1-D)end-fire陣列進行垂直堆疊,構建出二維(2-D)陣列架構。這些一維陣列具備雙極化特性,能實現與基站天線的極化匹配,並預留空間安置THz相控晶片。為了完成垂直堆疊,我們採用了厚度超過THz IC的dummy wafer柱,將多個一維子陣列面板組合成二維AiP陣列。最終,天線旋轉90度,使輻射模式從end-fire轉為broadside,減少了整體佔用空間。目前,我們已完成1x4天線的模擬與測量驗證,並完成4x4陣列天線的模擬分析。同時,我們也確定了未來需要採用的封裝技術,以實現1x4陣列的等間距垂直堆疊。
zh_TW
dc.description.abstractIn wireless communications, the growing demand for data traffic challenges existing spectrum resources. Researchers are now exploring high-frequency bands, specifically millimeter-wave (mmWave) and Terahertz (THz) bands, which offer high bandwidth and low latency and address these needs. The sub-THz band, in particular, provides higher spectral efficiency and lower power consumption, supporting emerging applications like the Internet of Things (IoT) and virtual reality (VR).
However, these high-frequency bands face challenges, including significant propagation losses and limited transmission distances that restrict coverage. Large-scale phased-array antennas can help by electronically steering beams to enhance gain and extend coverage. Yet, traditional antenna designs using multi-layer printed circuit boards (PCBs) encounter limitations because THz transceiver modules are often larger than the antennas.
To overcome these issues, we propose an Antenna-in-Package (AiP) design that positions the antenna elements at the edge of the substrate, directing radiation parallel to it. This design uses vertically stacked one-dimensional End-Fire arrays to create a two-dimensional array. These arrays feature dual-polarization capabilities, aligning with base station antennas while allowing space for THZ transceiver modules. We achieve vertical stacking with connectors thicker than THz integrated circuits, leading to a compact 2-D AiP array. Additionally, the antenna is rotated 90 degrees, transforming the radiation mode and reducing its overall footprint.
We have completed simulations and measurements of a 1x4 antenna and analyzed a 4x4 array antenna, as well as identified the necessary packaging technology for vertical stacking of 1x4 arrays.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:38:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:38:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
ABSTRACT v
目次 vi
圖次 viii
表次 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 論文貢獻 1
1.3 章節描述 3
第二章 次太赫茲端射天線陣列系統 4
2.1 相控陣列系統概述 4
2.1.1 兩點波源相位陣列 5
2.1.2 N點波源相位陣列 7
2.2 水平線極化單元設計 8
2.3 垂直線極化單元設計 24
2.4 交錯極化排列的1x4陣列設計 33
2.5 相鄰層交錯極化排列的4x4陣列設計 40
2.6 4x4堆疊組裝與熱傳導分析 46
2.7 小結 51
第三章 次太赫茲被動元件設計 53
3.1 Butler matrix波束成型網路設計 53
3.1.1 Quadrature branch-line coupler設計 54
3.1.2 Crossover 設計 56
3.1.3 元件整合與系統設計 59
3.2 增益優化反射面與治具設計 64
3.2.1 偏置拋物反射面設計概論與參數分析 65
3.2.2 量測治具設計與未來驗證 68
3.3 寬頻異質整合結構設計 71
3.3.1 文獻回顧與技術比較 71
3.3.2 低損耗Direct couple轉接結構設計 77
第四章 次太赫茲天線量測 82
4.1 環形軌道直接遠場量測 83
4.1.1 量測結果 87
4.2 反射式縮距遠場量測 88
4.2.1 量測架設與結果 91
4.3 高增益反射面驗證結果 101
4.4 小結 104
第五章 結論與未來展望 105
5.1 研究結論 105
5.2 未來工作方向 106
參考文獻 107
-
dc.language.isozh_TW-
dc.subject雙極化zh_TW
dc.subject異質整合轉接結構zh_TW
dc.subject相控陣列zh_TW
dc.subject次太赫茲zh_TW
dc.subject太赫茲zh_TW
dc.subjectHeterogeneous integration structureen
dc.subjectTerahertzen
dc.subjectPhased arrayen
dc.subjectDual-polarizeden
dc.title基於端射架構之太赫茲頻段前視輻射天線封裝設計以緩解空間限制zh_TW
dc.titleNovel End-Fire Based Broadside Radiation AiP Design in THz Band for Mitigating Space Constraintsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧信嘉;鄭宇翔;廖文照;曹逸凡zh_TW
dc.contributor.oralexamcommitteeHsin-Chia Lu;Yu-Hsiang Cheng;Wen-Jiao Liao;Yi-Fan Tsaoen
dc.subject.keyword太赫茲,次太赫茲,相控陣列,雙極化,異質整合轉接結構,zh_TW
dc.subject.keywordTerahertz,Phased array,Dual-polarized,Heterogeneous integration structure,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202404655-
dc.rights.note未授權-
dc.date.accepted2025-07-21-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
11.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved