Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98053
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鐘嘉德zh_TW
dc.contributor.advisorChar-Dir Chungen
dc.contributor.author黃予璿zh_TW
dc.contributor.authorYu-Hsuan Huangen
dc.date.accessioned2025-07-23T16:36:34Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-20-
dc.identifier.citation[1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1-6.
[2] R. Hadani et al., “Orthogonal time frequency space modulation,” 2018, arXiv:1808.00519.
[3] P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018.
[4] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957-961, Jan. 2019.
[5] S. Tiwari, S. S. Das, and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019.
[6] F. Lampel, A. Alvarado and F. M. J. Willems, "A Sliding-Window LMMSE Turbo Equalization Scheme for OTFS," IEEE Communications Letters, vol. 27, no. 12, pp. 3320-3324, Dec. 2023.
[7] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May 2019.
[8] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Trans. Commun., vol. 20, no. 12, pp. 7773-7785, Dec. 2021.
[9] H. B. Mishra, P. Singh, A. K. Prasad, and R. Budhiraja, “OTFS channel estimation and data detection designs with superimposed pilots,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2258-2274, Apr. 2022.
[10] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Off-grid channel estimation with sparse Bayesian learning for OTFS systems,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7407-7426, Sep. 2022.
[11] Z. Gui, Y. Li, C. Zhou, Q. Xiong, and X. Xia, “3D-ESP: An efficient subspace pursuit algorithm for MIMO-OTFS channel estimation,” IEEE Trans. Veh. Technol., vol. 73, no. 11, pp. 17714-17719, Nov. 2024.
[12] V. Khammammetti and S. K. Mohammed, “OTFS-based multiple-access in high Doppler and delay spread wireless channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 528-531, Apr. 2019.
[13] A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Nonorthogonal multiple access with orthogonal time-frequency space signal transmission,” IEEE Syst. J., vol. 15, no. 1, pp. 383-394, Mar. 2021.
[14] Y. Ge, Q. Deng, D. González G., Y. L. Guan, and Z. Ding “OTFS signaling for SCMA with coordinated multi-point vehicle communications,” IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9044-9057, Jul. 2023.
[15] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, Jr., “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204-4217, Aug. 2019.
[16] Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994-2009, Sep. 2020.
[17] C. Shi, L. Zhao, Y. Cui, Y. Chu, W. Guo, and W. Wang, “Joint detection and channel estimation for MIMO-OTFS systems,” IEEE Trans. Veh. Technol., vol. 73, no. 8, pp. 11 568–11 579, Aug. 2024.
[18] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999-1002, Jun. 2019.
[19] P. Wei, Y. Xiao, W. Feng, N. Ge, and M. Xiao, “Characterizing the peak to-average power ratio of OTFS signals: A large system analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3705-3720, Jun. 2022.
[20] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019.
[21] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249-253, Feb. 2020.
[22] A. S. Bora, K. T. Phan, and Y. Hong, “Diversity analysis of OTFS over block time-varying channels,” IEEE Trans. Veh. Technol., vol.73, no.9, pp. 14062-14067, Sep. 2024.
[23] K. Sinha, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo, “OTFS based random access preamble transmission for high mobility scenarios,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15078-15094, Dec. 2020.
[24] X. Geng et al., “Random access preamble design and timing advance estimation for OTFS systems in high-mobility scenarios,” Electronics, vol. 13, no. 7, art. no. 1166, Apr. 2024.
[25] M. S. Khan, Y. J. Kim, Q. Sultan, J. Joung, and Y. S. Cho, “Downlink synchronization for OTFS-based cellular systems in high Doppler environments,” IEEE Access, vol. 9, pp. 73575-73589, May 2021.
[26] M. Bayat and A. Farhang, “Time and frequency synchronization for OTFS,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2670-2674, Dec. 2022.
[27] C. D. Chung, M. Z. Xu, and W. C. Chen, “Initial time synchronization for OTFS,” IEEE Trans. Veh. Technol., accepted for publication, Jul, 2024.
[28] M. Z. Xu, C. D. Chung, and W. C. Chen, “Coarse initial time synchronization for OTFS,” in Proc. IEEE Veh. Technol. Conf., Hong Kong, Oct. 2023.
[29] Lin, Wei-Ting. (2024). Initial synchronization for rectangular-pulsed orthogonal time frequency space systems [Master’s thesis, National Taiwan University]. National Digital Library of These and Dissertations in Taiwan.
[30] M. Hsieh and C. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consum. Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998.
[31] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3, pp. 223-229, Sep. 2002.
[32] Beitia, Jon Ander. (2014). Urban, suburban and rural channel models based on cellular and wireless area network signals for positioning purposes (URN: NBN:fi:tty-201408281415) [Master’s thesis, Tampere University of Technology] Trepo Institutional Repository.
[33] A. Zhou et al., “60 GHz channel measurements and ray tracing modeling in an indoor environment,” in Proc. ICWCSP’17, Nanjing, China, Oct. 2017.
[34] N. Moraitis and K. S. Nikita, “Ray-tracing propagation modeling in urban environment at 140 GHz for 6G wireless networks,” IEEE Access, vol. 11, pp. 133835–133849, 2023.
[35] J. Huang et al., “Channel measurements and modeling for 400–600-MHz bands in urban and suburban scenarios,” IEEE Internet Things J., vol. 8, no. 7, pp. 5531–5543, Apr. 2021.
[36] Technical Specification Group Radio Access Network; Study Channel Model for Frequencies From 0.5 to 100 GHz (Release 16), document 3GPP 38.901, Rev. 16.1.0, Dec. 2019
[37] B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB. Boca Raton, FL, USA: CRC Press, 2013.
[38] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98053-
dc.description.abstract本報告進行對初始時間同步(initial time synchronization; ITS)的研究,ITS對於在線性時變多路徑(linear time varying multipath; LTV)通道下運行的正交時頻間距調變(orthogonal time frequency space; OTFS)的相干解調至關重要。先前的研究已經開發了有效地基於前導訊框的ITS方法,並利用各種選擇最大值識別規則來估計LTV通道中具有強主導路徑的情況下的主導路徑延遲。然而,當LTV通道沒有強主導路徑時,這些ITS方法的估計準確性會明顯降低。本報告提出了一種基於梳狀前導訊框(comb-type preamble-frame; CPF)的ITS系統,該系統採用離散時間過取樣技術,並引入了兩種新的選擇主導峰值識別規則,以提升ITS的性能。無論LTV通道是否具有強主導路徑,改進的CPF型ITS系統在估計準確性和對都卜勒的穩健性方面均顯著優於現有的基於前導訊框的ITS系統。zh_TW
dc.description.abstractInitial time synchronization (ITS) is essential for the coherent demodulation in orthogonal time frequency space systems operating over the linear time varying multipath (LTV) channels. Previous studies have developed efficacious preamble-frame-based ITS approaches using various select-the-largest identification rules to estimate the leading channel path delay over LTV channels exhibiting a strong leading path. However, such ITS approaches provide noticeable estimation inaccuracy under LTV channels without a strong leading path. In this paper, a comb-type preamble-frame (CPF)-based ITS system adopting discrete-time oversampling and two new select-the-leading-peak identification rules are proposed to provide improved ITS performance. Particularly, whether LTV channels exhibit a strong leading path or not, the improved CPF-based ITS system outperforms existing preamble-frame-based ITS systems significantly in estimation accuracy and robustness against Doppler spread.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:36:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:36:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viii
List of Abbreviations ix
Notations iii
Chapter 1 Introduction 1
1.1 Rectangularly-pulsed OTFS Modulation 1
1.2 Initial Time Synchronization 2
1.3 Multipath Propagation 6
1.4 Motivation and Contribution 7
1.5 Organization 8
Chapter 2 ITS System 9
2.1 Transmitted Signal 9
2.1.1 Comb-type Preamble Frame Waveform 9
2.1.2 Discrete Ambiguity Function 10
2.1.3 Transmitted Signal Model 11
2.2 Received Signal 12
2.2.1 LTV Channel Model 12
2.2.2 Received Signal Model 12
2.2.3 Discrete Cross-Ambiguity Measures 15
Chapter 3 Synchronization Rules 21
3.1 Review of Select-the-largest Identification Rule 22
3.2 Review of Newtonized-select-the-largest Identification Rule 23
3.3 Review of Select-the-largest Group Identification Rule 23
3.4 Select-the-leading-peak Identification 1 Rule 24
3.5 Select-the-leading-peak Identification 2 Rule 29
Chapter 4 Performance Results 32
4.1 Channel and System Parameters 34
4.2 Performance Results of SLPI1-CPF System 36
4.3 Performance Results of SLPI2-CPF System 44
4.4 Comparison of Complexity 47
Chapter 5 Conclusion 50
Reference 51
Appendix 56
-
dc.language.isoen-
dc.subject正交時頻間距zh_TW
dc.subject初始時間同步zh_TW
dc.subject線性時變多路徑通道zh_TW
dc.subject梳狀前導訊框波形zh_TW
dc.subjectlinear time-varying multipath channelen
dc.subjectorthogonal time frequency spaceen
dc.subjectcomb-type preamble frame waveformen
dc.subjectinitial time synchronizationen
dc.title矩形脈波正交時頻間距調變系統之改進的初始時間同步zh_TW
dc.titleImproved Initial Time Synchronization for Rectangularly-pulsed Orthogoanl Time Frequency Space Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳維昌zh_TW
dc.contributor.coadvisorWei-Chang Chenen
dc.contributor.oralexamcommittee林茂昭;蘇育德;古孟霖zh_TW
dc.contributor.oralexamcommitteeMao-Chao Lin;Yu-Ted Su;Meng-Lin Kuen
dc.subject.keyword正交時頻間距,梳狀前導訊框波形,初始時間同步,線性時變多路徑通道,zh_TW
dc.subject.keywordorthogonal time frequency space,comb-type preamble frame waveform,initial time synchronization,linear time-varying multipath channel,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202502071-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-21-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-07-24-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved